18 research outputs found
The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer
BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation
Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication
The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal.We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8(+) T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNΞ³ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones.Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases
Mutations of a Residue within the Polyproline-Rich Region of Env Alter the Replication Rate and Level of Cytopathic Effects in Chimeric Avian Retroviral Vectors
Previous attempts to extend the host range of the avian sarcoma/leukosis virus (ASLV)-based RCASBP vectors produced two viral vectors, RCASBP M2C (4070A) and RCASBP M2C (797-8), which replicate using the amphotropic murine leukemia virus 4070A Env protein (2). Both viruses were adapted to replicate efficiently in the avian cell line DF-1, but RCASBP M2C (4070A) caused extensive cytopathic effects (CPE) in DF-1 cells whereas RCASBP M2C (797-8) induced low levels of CPE. The two viruses differed only at amino acid 242 of the polyproline-rich region in the surface (SU) subunit of the Env protein. In RCASBP M2C (4070A), an isoleucine replaced the wild-type proline residue, whereas a threonine residue was found in RCASBP M2C (797-8). In the present study, we show that other amino acid substitutions at position 242 strongly influence the CPE and replication rate of the chimeric viruses. There was a correlation between the amount of unintegrated linear retroviral DNA present in infected DF-1 cells and the level of CPE. This suggests that there may be a role for superinfection in the CPE. The treatment of RCASBP M2C (4070A)-infected cells with dantrolene, which inhibits the release of calcium from the endoplasmic reticulum (ER), reduced the amount of CPE seen during infection with the highly cytotoxic virus. Dantrolene treatment did not appear to affect virus production, suggesting that Ca(2+) release from the ER had a role in the CPE caused by these viruses
Correction: Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication.
[This corrects the article DOI: 10.1371/journal.pone.0023703.]
Telomerase Reverse Transcriptase Increases Proliferation and Lifespan of Human NK Cells without Immortalization
NK cells are the first line of defense against viruses and malignant cells, and their natural functionality makes these cells a promising candidate for cancer cell therapy. The genetic modifications of NK cells, allowing them to overcome some of their inherent limitations, such as low proliferative potential, can enable their use as a therapeutic product. We demonstrate that hTERT-engineered NK cell cultures maintain a high percentage of cells in the S/G2 phase for an extended time after transduction, while the life span of NK cells is measurably extended. Bulk and clonal NK cell cultures pre-activated in vitro with IL-2 and K562-mbIL21 feeder cells can be transduced with hTERT more efficiently compared with the cells activated with IL-2 alone. Overexpressed hTERT was functionally active in transduced NK cells, which displayed upregulated expression of the activation marker HLA-DR, and decreased expression of the maturation marker CD57 and activating receptor NKp46. Larger numbers of KIR2DL2/3+ cells in hTERT-engineered populations may indicate that NK cells with this phenotype are more susceptible to transduction. The hTERT-modified NK cells demonstrated a high natural cytotoxic response towards K562 cells and stably expressed Ki67, a proliferation marker. Overall, our data show that ectopic hTERT expression in NK cells enhances their activation and proliferation, extends in vitro life span, and can be a useful tool in developing NK-based cancer cell therapies
Efficient inhibition of SIV replication in rhesus CD4+ T-cell clones by autologous immortalized SIV-specific CD8+ T-cell clones
AbstractCD8+ cytotoxic T lymphocyte (CTL) responses play an important role in controlling the replication of primate lentiviruses. Induction of these responses is a key objective for most current AIDS vaccine approaches. Despite a variety of approaches for measuring properties and activities of CTL, the functions responsible for controlling viral replication in vivo have not been clearly identified. Assays measuring CTL-mediated suppression of viral replication in vitro are beginning to be used as possible correlates of in vivo virus suppressive activity, but the utility and interpretive value of these assays are typically limited by properties of the cells that have been used. We investigated the capacity of SIV-specific CTL clones (effectors), immortalized by transduction with human telomerase reverse transcriptase (hTERT), to suppress SIV replication in autologous hTERT immortalized CD4+ T-cell clones (targets). Immortalized and non-immortalized SIV-specific effector cells showed IFN-Ξ³ production and degranulation in response to viral antigen specific stimulation and significantly inhibited SIVmac239 replication (2 to 4 log decrease in viral RNA or cell-associated proviral DNA) (p<0.0005). Our in vitro assays of inhibition of viral replication, using T-cell clones as effectors and targets, provide a well-defined approach for evaluating possible mechanisms of CTL-mediated control of viral production which may involve direct killing of infected target cells and/or release of proinflammatory cytokines such as IFN-Ξ³ and TNF-Ξ±. The use of hTERT immortalized effector and target cells for such assays preserves relevant functional properties while providing a convenient, reproducible means of conducting studies over time
Flow cytometry analysis of transduced T cells.
<p>A, analysis of the TCR-transduced EZP cell lines for CM9 peptide/MHC tetramer and SL8 peptide/MHC tetramer is presented with that of the untransduced CD8<sup>+</sup> control cell line from recipient animal EZP. B, tetramer analysis of two SIV-specific CTL clones isolated from donor animal DAJ is presented above tetramer-sorted TCR transduced CD8<sup>+</sup> cell lines. The DAJ SL8β42 clone is the TCR gene donor for the SL8β42 TCR EZP cell line.</p