4 research outputs found

    Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan

    No full text
    The aim of this study was to determine the prevalence of A. baumannii antibiotic-resistant strains in Kazakhstan and to characterize genotypes related to epidemic “high-risk” clones. Two hundred and twenty four A. baumannii isolates from four cities of Kazakhstan in 2011–2019 were studied. Antibiotic susceptibility testing was performed by using broth microdilutions method according to EUCAST (v 11.0) recommendations. The presence of blaOXA-23-like, blaOXA-24/40-like,blaOXA-58-like,blaVIM,blaIMP, and blaNDM genes was determined by PCR. Genotyping was performed using high-throughput real-time PCR detection of 21 SNPs at 10 chromosomal loci used in existing MLST schemes. Resistance rates to imipenem, meropenem, amikacin, gentamicin, and ciprofloxacin were 81.3%, 78.6%, 79.9%, 65.2%, and 89.3%, respectively. No colistin resistant isolates were detected. The values of the MIC 50% and the MIC 90% of tigecycline were 0.125 mg/L, only four isolates (1.8%) had the ECOFF value >0.5 mg/L. The presence of acquired carbapenemase genes was found in 82.2% strains, including blaOXA-23-like (78.6%) or blaOXA-58-like (3.6%) genes. The spreading of carbapenem resistant A. baumannii strains in Kazakhstan was associated with epidemic “high-risk” clonal groups, predominantly, CG208(92)OXF/CG2PAS (80.8%) and less often CG231(109)OXF/CG1PAS (1.8%)

    Epidemiology and Genetic Diversity of Colistin Nonsusceptible Nosocomial Acinetobacter baumannii Strains from Russia for 2013-2014

    No full text
    A high level of resistance to carbapenems in Acinetobacter baumannii strains severely limits therapeutic possibilities. Colistin is the last resort drug against such strains, although the cases of resistance to this drug have become more frequent. This article presents the epidemiological features and genetic diversity of colistin nonsusceptible A. baumannii strains collected as part of a national multicenter epidemiological study of the antibiotic resistance of pathogens of nosocomial infections (MARATHON), which was conducted in 2013-2014 in Russia. A total of 527 A. baumannii isolates were collected, 10 (1.9%) of which were nonsusceptible to colistin. The majority of nonsusceptible A. baumannii isolates to colistin showed resistance to carbapenems and had the genes of the acquired OXA-40-like carbapenemases (n=6). In one case, a combination of OXA-23-like + OXA-40-like (n=1) genes was identified. One strain had the multidrug-resistant (MDR) phenotype, 6 isolates had extensively drug-resistant (XDR) phenotype, and 3 isolates had pandrug-resistant (PDR) phenotype. Among the colistin nonsusceptible A. baumannii isolates, 6 individual genotypes were identified, most of which belonged to successful international clones (CC92OXF/CC2PAS, n=4; CC944OXF/ST78PAS, n=4; CC109OXF/CC1PAS, n=1)

    Molecular Epidemiology of <i>mcr-1</i>-Positive <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> Isolates: Results from Russian Sentinel Surveillance (2013–2018)

    No full text
    Background: The dissemination of mobile colistin resistance (mcr) genes is a serious healthcare threat because polymyxins represent “last-line” therapeutics for multi-drug-resistant Gram-negative pathogens. This study aimed to assess the prevalence of colistin resistance and mcr genes and characteristics of clinical Escherichia coli (Eco) and Klebsiella pneumoniae (Kpn) isolates and plasmids carrying these genes in Russia. Methods: A total of 4324 Eco and 4530 Kpn collected in the frame of sentinel surveillance in 2013–2018 were tested for susceptibility to colistin and other antibiotics using the broth microdilution method. mcr genes were screened by real-time PCR. Phylogeny, genomic features and plasmids of mcr-positive isolates were assessed using whole-genome sequencing and subsequent bioinformatic analysis. Results: Colistin resistance was detected in 2.24% Eco and 9.3% Kpn. Twenty-two (0.51%) Eco and two (0.04%) Kpn from distant sites carried mcr-1.1. Most mcr-positive isolates co-harbored ESBLs and other resistance determinants to various antibiotic classes. The mcr-positive Eco belonged to 16 MLST types, with ST359 being most common; Kpn belonged to ST307 and ST23. mcr-1.1 was carried mainly in IncI2 (n = 18) and IncX4 (n = 5) plasmids highly similar to those identified previously in human, animal and environmental isolates. Conclusion: This study demonstrated a dissemination of “typical” mcr-bearing plasmids among diverse Eco and Kpn genotypes and across a wide geographic area in Russia. Given the frequent association of mcr with other resistance determinants and potential clinical impact, the continual surveillance of this threat is warranted

    Abstracts from the 8th International Congress of the Asia Pacific Society of Infection Control (APSIC)

    Get PDF
    corecore