11 research outputs found

    Prevalence and factors affecting home blood pressure documentation in routine clinical care: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Home blood pressure (BP) is closely linked to patient outcomes. However, the prevalence of its documentation has not been examined. The objective of this study was to analyze the prevalence and factors affecting documentation of home BP in routine clinical care.</p> <p>Methods</p> <p>A retrospective study of 142,973 encounters of 9,840 hypertensive patients with diabetes from 2000 to 2005 was performed. The prevalence of recorded home BP and the factors associated with its documentation were analyzed. We assessed validity of home BP information by comparing the difference between home and office BP to previously published prospective studies.</p> <p>Results</p> <p>Home BP was documented in narrative notes for 2.08% of encounters where any blood pressure was recorded and negligibly in structured data (EMR flowsheets). Systolic and diastolic home BP in narrative notes were lower than office BP readings by 9.6 and 2.5 mm Hg, respectively (p < 0.0001 for both), consistent with prospective data. Probability of home BP documentation increased by 23.0% for each 10 mm Hg of office systolic BP (p < 0.0001), by 6.2% for each $10,000 in median income of zip code (p = 0.0055), and by 17.7% for each decade in the patient's age (p < 0.0001).</p> <p>Conclusions</p> <p>Home BP readings provide a valid representation of the patient's condition, yet are seldom documented despite their potential utility in both patient care and research. Strong association between higher patient income and home BP documentation suggests that the cost of the monitors may be a limiting factor; reimbursement of home BP monitoring expenses should be pursued.</p

    Disorder in Milk Proteins: α -lactalbumin. Part A. Structural Properties and Conformational Behavior

    No full text
    This is a first part of the two-part article that continues a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We introduce here α-lactalbumin, a small (Mr 14 200), simple, acidic (pI 4–5), Ca2+-binding protein that might constitute up to 20% of total milk protein. Although function (it is one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland), structure (protein has two domains, a large α -helical domain and a small β -sheet domain connected by a calcium binding loop), and folding mechanisms (α-lactalbumin is well-known as a classic example of the molten globule state) of this model globular protein are relatively well understood, α-lactalbumin continues to surprise researchers and clearly continues to have high discovery potential. The goal of this review is to summarize some recent advances in the field of α-lactalbumin research and to analyze the peculiarities of the “intrinsic disorder code” of this protein

    Disorder in Milk Proteins: α -lactalbumin. Part A. Structural Properties and Conformational Behavior

    No full text
    This is a first part of the two-part article that continues a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We introduce here α-lactalbumin, a small (Mr 14 200), simple, acidic (pI 4–5), Ca2+-binding protein that might constitute up to 20% of total milk protein. Although function (it is one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland), structure (protein has two domains, a large α -helical domain and a small β -sheet domain connected by a calcium binding loop), and folding mechanisms (α-lactalbumin is well-known as a classic example of the molten globule state) of this model globular protein are relatively well understood, α-lactalbumin continues to surprise researchers and clearly continues to have high discovery potential. The goal of this review is to summarize some recent advances in the field of α-lactalbumin research and to analyze the peculiarities of the “intrinsic disorder code” of this protein

    Disorder in Milk Proteins: α-lactalbumin. Part C. Peculiarities of Metal Binding

    No full text
    This is a concluding part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. In this paper, we describe the peculiarities of metal binding to a multifunctional milk protein, α-lactalbumin, which has two domains, a large α-helical domain and a small β-sheet domain connected by a calcium binding loop. It is known that in addition to four disulfide bonds, the native fold of this protein is stabilized by binding of a calcium ion. In fact, although in various mammals, α-lactalbumins are rather poorly conserved possessing the overall sequence identity of ~16%, the positions of all eight cysteines and a calcium binding site (residues DKFLDDDITDDI in human protein) are strongly conserved. Curiously, this conserved calcium binding loop is located within a region with increased structural flexibility. Besides canonical calcium binding, α-lactalbumin is known to interact with other metals, such as zinc (for which it has a specific binding site), and, in its apo-form, it can bind other divalent and monovalent cations. The binding of Mg2+, Na+, and K+ to the Ca2+ site increases α-lactalbumin stability against action of heat and various denaturing agents, with the higher stabilization effects being imposed by the stronger bound metal ions

    Disorder in Milk Proteins: α-lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular “Oil Container” in the Anti-tumorigenic Drugs, Liprotides

    No full text
    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an “oil container” or cargo for the delivery of oleic acid to the cell membranes

    Disorder in Milk Proteins: α-lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular “Oil Container” in the Anti-tumorigenic Drugs, Liprotides

    No full text
    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an “oil container” or cargo for the delivery of oleic acid to the cell membranes

    Disorder in Milk Proteins: α-lactalbumin. Part C. Peculiarities of Metal Binding

    No full text
    This is a concluding part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. In this paper, we describe the peculiarities of metal binding to a multifunctional milk protein, α-lactalbumin, which has two domains, a large α-helical domain and a small β-sheet domain connected by a calcium binding loop. It is known that in addition to four disulfide bonds, the native fold of this protein is stabilized by binding of a calcium ion. In fact, although in various mammals, α-lactalbumins are rather poorly conserved possessing the overall sequence identity of ~16%, the positions of all eight cysteines and a calcium binding site (residues DKFLDDDITDDI in human protein) are strongly conserved. Curiously, this conserved calcium binding loop is located within a region with increased structural flexibility. Besides canonical calcium binding, α-lactalbumin is known to interact with other metals, such as zinc (for which it has a specific binding site), and, in its apo-form, it can bind other divalent and monovalent cations. The binding of Mg2+, Na+, and K+ to the Ca2+ site increases α-lactalbumin stability against action of heat and various denaturing agents, with the higher stabilization effects being imposed by the stronger bound metal ions

    Effects of Osmolytes on Protein-solvent Interactions in Crowded Environment: Analyzing the Effect of TMAO on Proteins in Crowded Solutions

    No full text
    We analyzed the effect of a natural osmolyte, trimethylamine N-oxide (TMAO), on structural properties and conformational stabilities of several proteins under macromolecular crowding conditions by a set of biophysical techniques. We also used the solvent interaction analysis method to look at the peculiarities of the TMAO-protein interactions under crowded conditions. To this end, we analyzed the partitioning of these proteins in TMAO-free and TMAO-containing aqueous two-phase systems (ATPSs). These ATPSs had the same polymer composition of 6.0 wt.% PEG-8000 and 12.0 wt.% dextran-75, and same ionic composition of 0.01 M K/NaPB, pH 7.4. These analyses revealed that there is no direct interaction of TMAO with proteins, suggesting that the TMAO effects on the protein structure in crowded solutions occur via the effects of this osmolyte on solvent properties of aqueous media. The effects of TMAO on protein structure in the presence of polymers were rather complex and protein-specific. Curiously, our study revealed that in highly concentrated polymer solutions, TMAO does not always act to promote further protein folding
    corecore