805 research outputs found

    Angiotensin II directly regulates intestinal epithelial NHE3 in Caco2BBE cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin II (AII) effects on intestinal Na<sup>+ </sup>transport may be multifactorial. To determine if AII might have a direct effect on intestinal epithelial Na<sup>+ </sup>transport, we investigated its actions on Na<sup>+ </sup>transport in human intestinal epithelial Caco2BBE cells.</p> <p>Results</p> <p>AII increased apical (brush border) sodium-hydrogen exchanger (NHE)-3, but not NHE2, activity within one hour. Similarly, only apical membrane NHE3 abundance increased at 1–2 hours without any change in total NHE3 protein abundance. From 4–48 hours, AII stimulated progressively larger increases in apical NHE3 activity and surface abundance, which was associated with increases in NHE3 protein expression. At 4–24 hours, NHE3 mRNA increases over baseline expression, suggesting increased gene transcription. This was supported by AII induced increases in rat NHE3 gene promoter-reporter activity. AII induction of NHE3 was blocked by the AII type I receptor antagonist losartan. Acute changes in AII-induced increases in NHE3 exocytosis were blocked by a phospholipase C inhibitor, an arachidonic acid cytochrome P450 epoxygenase inhibitor, as well as phosphatidylinositol 3 kinase (PI3K) inhibitors and Akt inhibitor, partially blocked by a metalloproteinase inhibitor and an EGF (epidermal growth factor) receptor kinase inhibitor, but not affected by an inhibitor of MEK-1 (MAPKK-1, mitogen activated protein kinase kinase-1).</p> <p>Conclusion</p> <p>We conclude that angiotensin II has a direct role in regulating intestinal fluid and electrolyte absorption which may contribute to its overall effects in regulation systemic volume and blood pressure. AII activates several key signaling pathways that induce acute and chronic changes in NHE3 membrane trafficking and gene transcription.</p

    Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward

    Get PDF
    In this commentary, we will review some of the early efforts aimed at understanding the role of the enteric microbiota in the causality of inflammatory bowel diseases. By examining these studies and drawing on our own experiences bridging clinical gastroenterology and microbial ecology as part of the NIH-funded Human Microbiome Project (Turnbaugh et al., 2007), we hope to help define some of the “growing pains” that have hampered these initial efforts. It is our sincere hope that this discussion will help advance future efforts in this area by identifying current challenges and limitations and by suggesting strategies to overcome these obstacles

    Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward

    Get PDF
    In this commentary, we will review some of the early efforts aimed at understanding the role of the enteric microbiota in the causality of inflammatory bowel diseases. By examining these studies and drawing on our own experiences bridging clinical gastroenterology and microbial ecology as part of the NIH-funded Human Microbiome Project (Turnbaugh et al., 2007), we hope to help define some of the “growing pains” that have hampered these initial efforts. It is our sincere hope that this discussion will help advance future efforts in this area by identifying current challenges and limitations and by suggesting strategies to overcome these obstacles

    Robustness of interdependent networks under targeted attack

    Full text link
    When an initial failure of nodes occurs in interdependent networks, a cascade of failure between the networks occurs. Earlier studies focused on random initial failures. Here we study the robustness of interdependent networks under targeted attack on high or low degree nodes. We introduce a general technique and show that the {\it targeted-attack} problem in interdependent networks can be mapped to the {\it random-attack} problem in a transformed pair of interdependent networks. We find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale free (SF) networks where the percolation threshold pc=0p_c=0, coupled SF networks are significantly more vulnerable with pcp_c significantly larger than zero. The result implies that interdependent networks are difficult to defend by strategies such as protecting the high degree nodes that have been found useful to significantly improve robustness of single networks.Comment: 11 pages, 2 figure

    The Microbe-Derived Short Chain Fatty Acid Butyrate Targets miRNA-Dependent p21 Gene Expression in Human Colon Cancer

    Get PDF
    Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs) that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the role of microRNA(miRNA) in butyrate's induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by miR-106b was assessed by 3′ UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was dampened by treatment with a miR-106b mimic. Mutated p21 3′UTR-reporter constructs expressed in HCT-116 cells confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis as well as carcinogenesis through modulation of miRNAs
    corecore