2 research outputs found
EDI3 links choline metabolism to integrin expression, cell adhesion and spreading
<div><p>Endometrial carcinoma differential 3 (EDI3) was the first member of the glycerophosphodiesterase (GDE) protein family shown to be associated with cancer. Our initial work demonstrated that endometrial and ovarian cancer patients with primary tumors overexpressing EDI3 had a higher risk of developing metastasis and decreased survival. Further analysis indicated that EDI3 cleaves glycerophosphocholine to choline and glycerol-3-phosphate, increases the levels of active PKC, and enhances the migratory activity of tumor cells. Despite these initial findings, EDI3 remained mainly uncharacterized. Therefore, to obtain an overview of processes in which EDI3 may be involved, gene array analysis was performed using MCF-7 breast cancer cells after EDI3 knockdown compared with a non-targeting control siRNA. Several biological motifs were altered, including an enrichment of genes involved in integrin-mediated signaling. More specifically, silencing of EDI3 in MCF-7 and OVCAR-3 cells was associated with reduced expression of the key receptor subunit integrin Ī²1, leading to decreased cell attachment and spreading accompanied by delayed formation of cell protrusions. To confirm these results, we stably overexpressed EDI3 in MCF-7 cells which led to elevated integrin Ī²1 expression associated with enhanced cell attachment and spreading - two processes critical for metastasis. In conclusion, our data provide further insight into the role of EDI3 during cancer progression.</p></div
Design Principles of Concentration-Dependent Transcriptome Deviations in Drug-Exposed Differentiating Stem Cells
Information on design principles
governing transcriptome changes
upon transition from safe to hazardous drug concentrations or from
tolerated to cytotoxic drug levels are important for the application
of toxicogenomics data in developmental toxicology. Here, we tested
the effect of eight concentrations of valproic acid (VPA; 25ā1000
Ī¼M) in an assay that recapitulates the development of human
embryonic stem cells to neuroectoderm. Cells were exposed to the drug
during the entire differentiation process, and the number of differentially
regulated genes increased continuously over the concentration range
from zero to about 3000. We identified overrepresented transcription
factor binding sites (TFBS) as well as superordinate cell biological
processes, and we developed a gene ontology (GO) activation profiler,
as well as a two-dimensional teratogenicity index. Analysis of the
transcriptome data set by the above biostatistical and systems biology
approaches yielded the following insights: (i) tolerated (ā¤25
Ī¼M), deregulated/teratogenic (150ā550 Ī¼M), and
cytotoxic (ā„800 Ī¼M) concentrations could be differentiated.
(ii) Biological signatures related to the mode of action of VPA, such
as protein acetylation, developmental changes, and cell migration,
emerged from the teratogenic concentrations range. (iii) Cytotoxicity
was not accompanied by signatures of newly emerging canonical cell
death/stress indicators, but by catabolism and decreased expression
of cell cycle associated genes. (iv) Most, but not all of the GO groups
and TFBS seen at the highest concentrations were already overrepresented
at 350ā450 Ī¼M. (v) The teratogenicity index reflected
this behavior, and thus differed strongly from cytotoxicity. Our findings
suggest the use of the highest noncytotoxic drug concentration for
gene array toxicogenomics studies, as higher concentrations possibly
yield wrong information on the mode of action, and lower drug levels
result in decreased gene expression changes and thus a reduced power
of the study