5 research outputs found

    Donald Pierson e o Projeto do Vale do Rio São Francisco: cientistas sociais em ação na era do desenvolvimento

    Full text link

    Constrained linear regression models for symbolic interval-valued variables

    No full text
    This paper introduces an approach to fitting a constrained linear regression model to interval-valued data. Each example of the learning set is described by a feature vector for which each feature value is an interval. The new approach fits a constrained linear regression model on the midpoints and range of the interval values assumed by the variables in the learning set. The prediction of the lower and upper boundaries of the interval value of the dependent variable is accomplished from its midpoint and range, which are estimated from the fitted linear regression models applied to the midpoint and range of each interval value of the independent variables. This new method shows the importance of range information in prediction performance as well as the use of inequality constraints to ensure mathematical coherence between the predicted values of the lower () and upper () boundaries of the interval. The authors also propose an expression for the goodness-of-fit measure denominated determination coefficient. The assessment of the proposed prediction method is based on the estimation of the average behavior of the root-mean-square error and square of the correlation coefficient in the framework of a Monte Carlo experiment with different data set configurations. Among other aspects, the synthetic data sets take into account the dependence, or lack thereof, between the midpoint and range of the intervals. The bias produced by the use of inequality constraints over the vector of parameters is also examined in terms of the mean-square error of the parameter estimates. Finally, the approaches proposed in this paper are applied to a real data set and performances are compared.

    Identifying Early Help Referrals For Local Authorities With Machine Learning And Bias Analysis

    Full text link
    Local authorities in England, such as Leicestershire County Council (LCC), provide Early Help services that can be offered at any point in a young person's life when they experience difficulties that cannot be supported by universal services alone, such as schools. This paper investigates the utilisation of machine learning (ML) to assist experts in identifying families that may need to be referred for Early Help assessment and support. LCC provided an anonymised dataset comprising 14360 records of young people under the age of 18. The dataset was pre-processed, machine learning models were build, and experiments were conducted to validate and test the performance of the models. Bias mitigation techniques were applied to improve the fairness of these models. During testing, while the models demonstrated the capability to identify young people requiring intervention or early help, they also produced a significant number of false positives, especially when constructed with imbalanced data, incorrectly identifying individuals who most likely did not need an Early Help referral. This paper empirically explores the suitability of data-driven ML models for identifying young people who may require Early Help services and discusses their appropriateness and limitations for this task
    corecore