4 research outputs found

    Agricultural land abandonment in Bulgaria: a long-term remote sensing perspective, 1950–1980

    Get PDF
    Agricultural land abandonment is a globally significant threat to the sustenance of economic, ecological, and social balance. Although the driving forces behind it can be multifold and versatile, rural depopulation and urbanization are significant contributors to agricultural land abandonment. In our chosen case study, focusing on two locations, Ruen and Stamboliyski, within the Plovdiv region of Bulgaria, we use aerial photographs and satellite imagery dating from the 1950s until 1980, in connection with official population census data, to assess the magnitude of agricultural abandonment for the first time from a remote sensing perspective. We use multi-modal data obtained from historical aerial and satellite images to accurately identify Land Use Land Cover changes. We suggest using the rubber sheeting method for the geometric correction of multi-modal data obtained from aerial photos and Key Hole missions. Our approach helps with precise sub-pixel alignment of related datasets. We implemented an iterative object-based classification approach to accurately map LULC distribution and quantify spatio-temporal changes from historical panchromatic images, which could be applied to similar images of different geographical regions

    Land use and land cover mapping using deep learning based segmentation approaches and VHR Worldview-3 images

    Get PDF
    Deep learning-based segmentation of very high-resolution (VHR) satellite images is a significant task providing valuable information for various geospatial applications, specifically for land use/land cover (LULC) mapping. The segmentation task becomes more challenging with the increasing number and complexity of LULC classes. In this research, we generated a new benchmark dataset from VHR Worldview-3 images for twelve distinct LULC classes of two different geographical locations. We evaluated the performance of different segmentation architectures and encoders to find the best design to create highly accurate LULC maps. Our results showed that the DeepLabv3+ architecture with an ResNeXt50 encoder achieved the best performance for different metric values with an IoU of 89.46%, an F-1 score of 94.35%, a precision of 94.25%, and a recall of 94.49%. This design could be used by other researchers for LULC mapping of similar classes from different satellite images or for different geographical regions. Moreover, our benchmark dataset can be used as a reference for implementing new segmentation models via supervised, semi- or weakly-supervised deep learning models. In addition, our model results can be used for transfer learning and generalizability of different methodologies

    Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery

    No full text
    In this research work, a multi-index-based support vector machine (SVM) classification approach has been proposed to determine the complex and morphologically heterogeneous land cover/use (LCU) patterns of cities, with a special focus on separating bare lands and built-up regions, using Istanbul, Turkey as the main study region, and Ankara and Konya (in Turkey) as the independent test regions. The multi-index approach was constructed using three-band combinations of spectral indices, where each index represents one of the three major land cover categories, green areas, water bodies, and built-up regions. Additionally, a shortwave infrared-based index, the Normalized Difference Tillage Index (NDTI), was proposed as an alternative to existing built-up indices. All possible index combinations and the original ten-band Sentinel-2A image were classified with the SVM algorithm, to map seven LCU classes, and an accuracy assessment was performed to determine the multi-index combination that provided the highest performance. The SVM classification results revealed that the multi-index combination of the normalized difference tillage index (NDTI), the red-edge-based normalized vegetation index (NDVIre), and the modified normalized difference water index (MNDWI) improved the mapping accuracy of the heterogeneous urban areas and provided an effective separation of bare land from built-up areas. This combination showed an outstanding overall performance with a 93% accuracy and a 0.91 kappa value for all LCU classes. The results of the test regions provided similar findings and the same index combination clearly outperformed the other approaches, with 92% accuracy and a 0.90 kappa value for Ankara, and an 84% accuracy and a 0.79 kappa value for Konya. The multi-index combination of the normalized difference built-up index (NDBI), the NDVIre, and the MNDWI, ranked second in the assessment, with similar accuracies to that of the ten-band image classification
    corecore