30 research outputs found

    Quantum State Engineering using Single Nuclear Spin Qubit of Optically Manipulated Ytterbium Atom

    Full text link
    A single Yb atom is loaded into a high-finesse optical cavity with a moving lattice, and its nuclear spin state is manipulated using a nuclear magnetic resonance technique. A highly reliable quantum state control with fidelity and purity greater than 0.98 and 0.96, respectively, is confirmed by the full quantum state tomography; a projective measurement with high speed (500us) and high efficiency (0.98) is accomplished using the cavity QED technique. Because a hyperfine coupling is induced only when the projective measurement is operational, the long coherence times (T_1 = 0.49 s and T_2 = 0.10 s) are maintained. Our technique can be applied for implementing a scalable one-way quantum computation with a cluster state in an optical lattice.Comment: 4 figure

    Faraday Rotation with Single Nuclear Spin Qubit in a High-Finesse Optical Cavity

    Full text link
    When an off-resonant light field is coupled with atomic spins, its polarization can rotate depending on the direction of the spins via a Faraday rotation which has been used for monitoring and controlling the atomic spins. We observed Faraday rotation by an angle of more than 10 degrees for a single 1/2 nuclear spin of 171Yb atom in a high-finesse optical cavity. By employing the coupling between the single nuclear spin and a photon, we have also demonstrated that the spin can be projected or weakly measured through the projection of the transmitted single ancillary photon.Comment: 6 pages, 6 figure
    corecore