62 research outputs found

    The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep

    Get PDF
    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators

    Plasma brain natriuretic peptide as a surrogate marker for cardioembolic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioembolic stroke generally results in more severe disability, since it typically has a larger ischemic area than the other types of ischemic stroke. However, it is difficult to differentiate cardioembolic stroke from non-cardioembolic stroke (atherothrombotic stroke and lacunar stroke). In this study, we evaluated the levels of plasma brain natriuretic peptide in acute ischemic stroke patients with cardioembolic stroke or non-cardioembolic stroke, and assessed the prediction factors of plasma brain natriuretic peptide and whether we could differentiate between stroke subtypes on the basis of plasma brain natriuretic peptide concentrations in addition to patient's clinical variables.</p> <p>Methods</p> <p>Our patient cohort consisted of 131 consecutive patients with acute cerebral infarction who were admitted to Kagawa University School of Medicine Hospital from January 1, 2005 to December 31, 2007. The mean age of patients (43 females, 88 males) was 69.6 ± 10.1 years. Sixty-two patients had cardioembolic stroke; the remaining 69 patients had non-cardioembolic stroke (including atherothrombotic stroke, lacunar stroke, or the other). Clinical variables and the plasma brain natriuretic peptide were evaluated in all patients.</p> <p>Results</p> <p>Plasma brain natriuretic peptide was linearly associated with atrial fibrillation, heart failure, chronic renal failure, and left atrial diameter, independently (F<sub>4,126 </sub>= 27.6, p < 0.0001; adjusted R<sup>2 </sup>= 0.45). Furthermore, atrial fibrillation, mitral regurgitation, plasma brain natriuretic peptide (> 77 pg/ml), and left atrial diameter (> 36 mm) were statistically significant independent predictors of cardioembolic stroke in the multivariable setting (Χ<sup>2 </sup>= 127.5, p < 0.001).</p> <p>Conclusion</p> <p>It was suggested that cardioembolic stroke was strongly predicted with atrial fibrillation and plasma brain natriuretic peptide. Plasma brain natriuretic peptide can be a surrogate marker for cardioembolic stroke.</p

    General aspects of muscle glucose uptake

    Full text link

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link

    5`-aminoimidazole-4-carboxyamide-ribonucleoside- activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle

    Full text link
    1. The nucleoside intermediate 5\u27-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) activates skeletal muscle AMP-activated protein kinase (AMPK) and increases glucose uptake. The AMPK phosphorylates neuronal nitric oxide synthase (nNOS)&micro; in skeletal muscle fibres. There is evidence that both AMPK and nNOS&micro; may be involved in the regulation of contraction-stimulated glucose uptake.2. We examined whether both AICAR- and contraction-stimulated glucose uptake were mediated by NOS in rat skeletal muscle.3. Rat isolated epitrochlearis muscles were subjected in vitro to electrically stimulated contractions for 10 min and/or incubated in the presence or absence of AICAR (2 mmol/L) or the NOS inhibitor NG-monomethyl-l-arginine (l-NMMA; 100 &micro;mol/L).4. Muscle contraction significantly (P &lt; 0.05) altered the metabolic profile of the muscle. In contrast, AICAR and l-NMMA had no effect on the metabolic profile of the muscle, except that AICAR increased muscle 5\u27-aminoimidazole-4-carboxyamide-ribonucleotide (ZMP) and AICAR content. Nitric oxide synthase inhibition caused a small but significant (P &lt; 0.05) reduction in basal 3-O-methylglucose transport, which was observed in all treatments. 5\u27-Aminoimidazole-4-carboxyamide-ribonucleoside significantly increased (P &lt; 0.05) glucose transport above basal, with NOS inhibition decreasing this slightly (increased by 209% above basal compared with 184% above basal with NOS inhibition). Contraction significantly increased glucose transport above basal, with NOS inhibition substantially reducing this (107% increase vs 31% increase). 5\u27-Aminoimidazole-4-carboxyamide-ribonucleoside plus contraction in combination were not additive on glucose transport.5. These results suggest that NO plays a role in basal glucose uptake and may regulate contraction-stimulated glucose uptake. However, NOS/nitric oxide do not appear to be signalling intermediates in AICAR-stimulated skeletal muscle glucose uptake.<br /
    • …
    corecore