20 research outputs found

    Regulation of DMD pathology by an ankyrin-encoded miRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting from the production of a nonfunctional dystrophin protein. MicroRNA (miRNA) are small 21- to 24-nucleotide RNA that can regulate both individual genes and entire cell signaling pathways. Previously, we identified several mRNA, both muscle-enriched and inflammation-induced, that are dysregulated in the skeletal muscles of DMD patients. One particularly muscle-enriched miRNA, miR-486, is significantly downregulated in dystrophin-deficient mouse and human skeletal muscles. miR-486 is embedded within the <it>ANKYRIN1(ANK1) </it>gene locus, which is transcribed as either a long (erythroid-enriched) or a short (heart muscle- and skeletal muscle-enriched) isoform, depending on the cell and tissue types.</p> <p>Results</p> <p>Inhibition of miR-486 in normal muscle myoblasts results in inhibited migration and failure to repair a wound in primary myoblast cell cultures. Conversely, overexpression of miR-486 in primary myoblast cell cultures results in increased proliferation with no changes in cellular apoptosis. Using bioinformatics and miRNA reporter assays, we have identified platelet-derived growth factor receptor ÎČ, along with several other downstream targets of the phosphatase and tensin homolog deleted on chromosome 10/AKT (PTEN/AKT) pathway, as being modulated by miR-486. The generation of muscle-specific transgenic mice that overexpress miR-486 revealed that miR-486 alters the cell cycle kinetics of regenerated myofibers <it>in vivo</it>, as these mice had impaired muscle regeneration.</p> <p>Conclusions</p> <p>These studies demonstrate a link for miR-486 as a regulator of the PTEN/AKT pathway in dystrophin-deficient muscle and an important factor in the regulation of DMD muscle pathology.</p

    LGMD2I in a North American population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a marked variation in clinical phenotypes that have been associated with mutations in <it>FKRP</it>, ranging from severe congenital muscular dystrophies to limb-girdle muscular dystrophy type 2I (LGMD2I).</p> <p>Methods</p> <p>We screened the <it>FKRP </it>gene in two cohorts totaling 87 patients with the LGMD phenotype.</p> <p>Results</p> <p>The c.826C>A, p.L276I mutation was present in six patients and a compound heterozygote mutation in a seventh patient. Six patients had a mild LGMD2I phenotype, which resembles that of Becker muscular dystrophy. The other patient had onset before the age of 3 years, and thus may follow a more severe course.</p> <p>Conclusion</p> <p>These findings suggest that LGMD2I may be common in certain North American populations. This diagnosis should be considered early in the evaluation of LGMD.</p

    Molecular diagnosis of hereditary inclusion body myopathy by linkage analysis and identification of a novel splice site mutation in <it>GNE</it>

    No full text
    Abstract Background Many myopathies share clinical features in common, and diagnosis often requires genetic testing. We ascertained a family in which five siblings presented with distal muscle weakness of unknown etiology. Methods We performed high-density genomewide linkage analysis and mutation screening of candidate genes to identify the genetic defect in the family. Preserved clinical biopsy material was reviewed to confirm the diagnosis, and reverse transcriptase PCR was used to determine the molecular effect of a splice site mutation. Results The linkage scan excluded the majority of known myopathy genes, but one linkage peak included the gene GNE, in which mutations cause autosomal recessive hereditary inclusion body myopathy type 2 (HIBM2). Muscle biopsy tissue from a patient showed myopathic features, including small basophilic fibers with vacuoles. Sequence analysis of GNE revealed affected individuals were compound heterozygous for a novel mutation in the 5' splice donor site of intron 10 (c.1816+5G>A) and a previously reported missense mutation (c.2086G>A, p.V696M), confirming the diagnosis as HIBM2. The splice site mutation correlated with exclusion of exon 10 from the transcript, which is predicted to produce an in-frame deletion (p.G545_D605del) of 61 amino acids in the kinase domain of the GNE protein. The father of the proband was heterozygous for the splice site mutation and exhibited mild distal weakness late in life. Conclusions Our study expands on the extensive allelic heterogeneity of HIBM2 and demonstrates the value of linkage analysis in resolving ambiguous clinical findings to achieve a molecular diagnosis.</p

    Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2

    No full text
    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family
    corecore