9 research outputs found
A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria
Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination
Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes
Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al
Docking Applied to the Prediction of the Affinity of Compounds to P-Glycoprotein
P-Glycoprotein (P-gp) is involved in the transport of xenobiotic compounds and responsible for the decrease of the drug accumulation in multi drug-resistant cells. In this investigation we compare several docking algorithms in order to find the conditions that are able to discriminate P-gp binders and non-binders. We built a comprehensive data set of binders and non-binders based on a careful analysis of the experimental data available in the literature, trying to overcome the discrepancy noticeable in the experimental results. We found that Autodock Vina flexible docking is the best choice for the tested options. The results will be useful to filter virtual screening results in the rational design of new drugs that are not expected to be expelled by P-gp.Fil: Palestro, Pablo Hernán. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de QuÃmica Medicinal; ArgentinaFil: Gavernet, Luciana. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de QuÃmica Medicinal; ArgentinaFil: Estiu, Guillermina L.. University of Notre Dame; Estados UnidosFil: Bruno Blanch, Luis Enrique. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de QuÃmica Medicinal; Argentin