17 research outputs found

    Brain metabolism and cerebrospinal fluid biomarkers profile of non-amnestic mild cognitive impairment in comparison to amnestic mild cognitive impairment and normal older subjects

    Get PDF
    Abstract\ud \ud Introduction\ud Mild cognitive impairment (MCI) is classically considered a transitional stage between normal aging and dementia. Non-amnestic MCI (naMCI) patients, however, typically demonstrate cognitive deficits other than memory decline. Furthermore, as a group, naMCI have a lower rate of an eventual dementia diagnosis as compared to amnestic subtypes of MCI (aMCI). Unfortunately, studies investigating biomarker profiles of naMCI are scarce. The study objective was to investigate the regional brain glucose metabolism (rBGM) with [18F]FDG-PET and cerebrospinal fluid (CSF) biomarkers in subjects with naMCI as compared to a control group (CG) and aMCI subjects.\ud \ud \ud Methods\ud Ninety-five patients were included in three different groups: naMCI (N = 32), aMCI (N = 33) and CG (N = 30). Patients underwent brain MRI and [18F]FDG-PET. A subsample (naMCI = 26, aMCI = 28) also had an assessment of amyloid-β, tau, and phosphorylated tau levels in the CSF.\ud \ud \ud Results\ud Both MCI groups had lower rBGM in relation to the CG in the precuneus. Subjects with naMCI showed decreased right prefrontal metabolism as well as higher levels of CSF amyloid-β relative to aMCI subjects.\ud \ud \ud Conclusion\ud While amnestic MCI subjects showed a biomarker profile classically related to MCI due to Alzheimer’s disease, naMCI patients illustrated a decrease in both prefrontal hypometabolism and higher CSF amyloid-β levels relative to the aMCI group. These biomarker findings indicate that naMCI is probably a heterogeneous group with similar precuneus hypometabolism compared to aMCI, but additional frontal hypometabolism and less amyloid-β deposition in the brain. Clinical follow-up and reappraisal of biomarkers of the naMCI group is needed to determine the outcome and probable etiological diagnosis.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) numbers 2011/18245-4 and 2009/17398-1 in BrazilCoordination for the Improvement of Higher Education Personnel (CAPES)/Brazi

    Brain metabolism and cerebrospinal fluid biomarkers profile of non-amnestic mild cognitive impairment in comparison to amnestic mild cognitive impairment and normal older subjects

    Get PDF
    Abstract\ud \ud Introduction\ud Mild cognitive impairment (MCI) is classically considered a transitional stage between normal aging and dementia. Non-amnestic MCI (naMCI) patients, however, typically demonstrate cognitive deficits other than memory decline. Furthermore, as a group, naMCI have a lower rate of an eventual dementia diagnosis as compared to amnestic subtypes of MCI (aMCI). Unfortunately, studies investigating biomarker profiles of naMCI are scarce. The study objective was to investigate the regional brain glucose metabolism (rBGM) with [18F]FDG-PET and cerebrospinal fluid (CSF) biomarkers in subjects with naMCI as compared to a control group (CG) and aMCI subjects.\ud \ud \ud Methods\ud Ninety-five patients were included in three different groups: naMCI (N = 32), aMCI (N = 33) and CG (N = 30). Patients underwent brain MRI and [18F]FDG-PET. A subsample (naMCI = 26, aMCI = 28) also had an assessment of amyloid-β, tau, and phosphorylated tau levels in the CSF.\ud \ud \ud Results\ud Both MCI groups had lower rBGM in relation to the CG in the precuneus. Subjects with naMCI showed decreased right prefrontal metabolism as well as higher levels of CSF amyloid-β relative to aMCI subjects.\ud \ud \ud Conclusion\ud While amnestic MCI subjects showed a biomarker profile classically related to MCI due to Alzheimer’s disease, naMCI patients illustrated a decrease in both prefrontal hypometabolism and higher CSF amyloid-β levels relative to the aMCI group. These biomarker findings indicate that naMCI is probably a heterogeneous group with similar precuneus hypometabolism compared to aMCI, but additional frontal hypometabolism and less amyloid-β deposition in the brain. Clinical follow-up and reappraisal of biomarkers of the naMCI group is needed to determine the outcome and probable etiological diagnosis.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) numbers 2011/18245-4 and 2009/17398-1 in BrazilCoordination for the Improvement of Higher Education Personnel (CAPES)/Brazi

    Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent

    Get PDF
    Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter‐individual variability in associations between body weight and dairy consumption. Methods and results: A genome‐wide interaction study to discover genetic variants that account for variation in BMI in the context of low‐fat, high‐fat and total dairy intake in cross‐sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta‐analyzed. Twenty‐six genetic variants reached the selected significance threshold (p‐interaction \u3c10−7), and six independent variants (LINC01512‐rs7751666, PALM2/AKAP2‐rs914359, ACTA2‐rs1388, PPP1R12A‐rs7961195, LINC00333‐rs9635058, AC098847.1‐rs1791355) were evaluated meta‐analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p‐interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p‐interaction = 7.36 × 10−8) such that each serving of low‐fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2‐rs1388) approached interaction replication significance for low‐fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight

    Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium

    Get PDF
    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10−8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    Physical activity attenuates the influence of FTO variants on obesity risk : a meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction)  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.Peer reviewe

    Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium

    Get PDF
    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10−8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations
    corecore