4 research outputs found

    Mu-tau neutrino refraction and collective three-flavor transformations in supernovae

    Get PDF
    We study three-flavor collective neutrino transformations in the dense-neutrino region above the neutrino sphere of a supernova core. We find that two-flavor conversions driven by the atmospheric mass difference and the 13-mixing angle capture the full effect if one neglects the second-order difference between the muon and tau neutrino refractive index. Including this "mu-tau matter term" provides a resonance at a density of approximately 3 x 10^7 g cm^-3 that typically causes significant modifications of the overall electron neutrino and antineutrino survival probabilities. This effect is surprisingly sensitive to deviations from maximal 23-mixing, being different for each octant.Comment: 9 pages, 7 figures. New presentation of results, version to be published in PR

    Collective neutrino flavor transitions in supernovae and the role of trajectory averaging

    Get PDF
    Non-linear effects on supernova neutrino oscillations, associated with neutrino self-interactions, are known to induce collective flavor transitions near the supernova core for theta_13 \neq 0. In scenarios with very shallow electron density profiles, these transformations have been shown to couple with ordinary matter effects, jointly producing spectral distortions both in normal and inverted hierarchy. In this work we consider a complementary scenario, characterized by higher electron density, as indicated by post-bounce shock-wave simulations. In this case, early collective flavor transitions are decoupled from later, ordinary matter effects. Moreover, such transitions become more amenable to both numerical computations and analytical interpretations in inverted hierarchy, while they basically vanish in normal hierarchy. We numerically evolve the neutrino density matrix in the region relevant for self-interaction effects. In the approximation of averaged intersection angle between neutrino trajectories, our simulations neatly show the collective phenomena of synchronization, bipolar oscillations, and spectral split, recently discussed in the literature. In the more realistic (but computationally demanding) case of non-averaged neutrino trajectories, our simulations do not show new significant features, apart from the smearing of ``fine structures'' such as bipolar nutations. Our results seem to suggest that, at least for non-shallow matter density profiles, averaging over neutrino trajectories plays a minor role in the final outcome. In this case, the swap of nu_e and nu_{\mu,\tau} spectra above a critical energy may represent an unmistakable signature of the inverted hierarchy, especially for theta_{13} small enough to render further matter effects irrelevant.Comment: v2 (27 pages, including 9 eps figures). Typos removed, references updated. Minor comments added. Corrected numerical errors in Eq.(6). Matches the published versio

    Multi-angle Effects in Collective Supernova Neutrino Oscillations.

    Full text link
    We study two-flavor collective neutrino oscillations in the dense-neutrino region above the neutrino sphere in a supernova (SN). The angular dependence of the neutrino-neutrino interaction potential causes "multi-angle" effects that can lead either to complete kinematical decoherence in flavor space or only to small differences between different trajectories. This nonlinear system switches abruptly between "self-maintained coherence" and "self-induced decoherence" among the angular modes, depending on the strength of the deleptonization flux. For a realistic SN the quasi single-angle behavior is probably typical, simplifying the numerical treatment and probably allowing for the survival of observational features of flavor oscillations.Comment: Contribution to TAUP 07, Sendai, Japa
    corecore