168 research outputs found

    Collisional properties of ultracold K-Rb mixtures

    Full text link
    We determine the inter-species s-wave triplet scattering length a3 for all K-Rb isotopic mixtures by measuring the cross-section for collisions between 41K and 87Rb in different temperature regimes. The positive value a3=+163(+57,-12)a0 ensures the stability of binary 41K-87Rb Bose-Einstein condensates. For the fermion-boson mixture 40K-87Rb we obtain a large and negative scattering length which implies an efficient sympathetic cooling of the fermionic species down to the degenerate regime.Comment: 4 pages, 4 figures; revised version (references added and small changes

    Optics with an Atom Laser Beam

    Full text link
    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin-flip in the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is measured

    Spectral Properties of Coupled Bose-Einstein Condensates

    Get PDF
    We investigate the energy spectrum structure of a system of two (identical) interacting bosonic wells occupied by N bosons within the Schwinger realization of the angular momentum. This picture enables us to recognize the symmetry properties of the system Hamiltonian H and to use them for characterizing the energy eigenstates. Also, it allows for the derivation of the single-boson picture which is shown to be the background picture naturally involved by the secular equation for H. After deriving the corresponding eigenvalue equation, we recast it in a recursive N-dependent form which suggests a way to generate the level doublets (characterizing the H spectrum) via suitable inner parameters. Finally, we show how the presence of doublets in the spectrum allows to recover, in the classical limit, the symmetry breaking effect that characterizes the system classically.Comment: 8 pages, 3 figures; submitted to Phys. Rev. A. The present extended form replaces the first version in the letter forma

    An Atom Laser with a cw Output Coupler

    Full text link
    We demonstrate a continuous output coupler for magnetically trapped atoms. Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is continuously extracted from a Bose- Einstein condensate. The intensity and kinetic energy of the output beam of this atom laser are controlled by a weak rf-field that induces spin flips between trapped and untrapped states. Furthermore, the output coupler is used to perform a spectroscopic measurement of the condensate, which reveals the spatial distribution of the magnetically trapped condensate and allows manipulation of the condensate on a micrometer scale.Comment: 4 pages, 4 figure

    Superfluid to Mott insulator transition in one, two, and three dimensions

    Full text link
    We have created one-, two-, and three-dimensional quantum gases and study the superfluid to Mott insulator transition. Measurements of the transition using Bragg spectroscopy show that the excitation spectra of the low-dimensional superfluids differ significantly from the three-dimensional case

    Quantum statistics of atoms in microstructures

    Get PDF
    This paper proposes groove-like potential structures for the observation of quantum information processing by trapped particles. As an illustration the effect of quantum statistics at a 50-50 beam splitter is investigated. For non-interacting particles we regain the results known from photon experiments, but we have found that particle interactions destroy the perfect bosonic correlations. Fermions avoid each other due to the exclusion principle and hence they are far less sensitive to particle interactions. For bosons, the behavior can be explained with simple analytic considerations which predict a certain amount of universality. This is verified by detailed numerical calculations.Comment: 18 pages incl. 13 figure

    Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field

    Full text link
    The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs heterostructures is studied in the case where the two-dimensional electron gas (2DEG) is subject to a strong magnetic field and a smooth random potential with correlation length Lambda and amplitude Delta. The electron wave functions are described in a quasiclassical picture using results of percolation theory for two-dimensional systems. In accordance with the experimental situation, Lambda is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to electrons occupying extended trajectories of fractal structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons are considered and the corresponding interaction vertices are derived. These vertices are found to differ from those valid for three-dimensional bulk phonon systems with respect to the phonon wave vector dependence. We derive the appropriate dielectric function varepsilon(omega,q) to describe the effect of screening on the electron-phonon coupling. In the low temperature, high frequency regime T << Delta (omega_q*Lambda /v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q) are independent of temperature. The classical percolation indices give alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW occurs is found to be given by the scaling law |Delta \bar{\nu}| approx (omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad

    Generic model of an atom laser

    Full text link
    We present a generic model of an atom laser by including a pump and loss term in the Gross-Pitaevskii equation. We show that there exists a threshold for the pump above which the mean matter field assumes a non-vanishing value in steady-state. We study the transient regime of this atom laser and find oscillations around the stationary solution even in the presence of a loss term. These oscillations are damped away when we introduce a position dependent loss term. For this case we present a modified Thomas-Fermi solution that takes into account the pump and loss. Our generic model of an atom laser is analogous to the semi-classical theory of the laser.Comment: 15 pages, including 5 figures, submitted to Phys. Rev. A, revised manuscript, file also available at http://www.physik.uni-ulm.de/quan/users/kne

    Substrate-based atom waveguide using guided two-color evanescent light fields

    Full text link
    We propose a dipole-force linear waveguide which confines neutral atoms up to lambda/2 above a microfabricated single-mode dielectric optical guide. The optical guide carries far blue-detuned light in the horizontally-polarized TE mode and far red-detuned light in the vertically-polarized TM mode, with both modes close to optical cut-off. A trapping minimum in the transverse plane is formed above the optical guide due to the differing evanescent decay lengths of the two modes. This design allows manufacture of mechanically stable atom-optical elements on a substrate. We calculate the full vector bound modes for an arbitrary guide shape using two-dimensional non-uniform finite elements in the frequency-domain, allowing us to optimize atom waveguide properties. We find that a rectangular optical guide of 0.8um by 0.2um carrying 6mW of total laser power (detuning +-15nm about the D2 line) gives a trap depth of 200uK for cesium atoms (m_F = 0), transverse oscillation frequencies of f_x = 40kHz and f_y = 160kHz, collection area ~ 1um^2 and coherence time of 9ms. We discuss the effects of non-zero m_F, surface interactions, heating rate, the substrate refractive index, and the limits on waveguide bending radius.Comment: 12 pages, 4 figures, revtex, submitted to Phys. Rev. A Replaced: final version accepted by PRA v.61 Feb 2000. (2 paragraphs added

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
    corecore