222 research outputs found

    Measuring the temporal coherence of an atom laser beam

    Full text link
    We report on the measurement of the temporal coherence of an atom laser beam extracted from a 87^{87}Rb Bose-Einstein condensate. Reflecting the beam from a potential barrier creates a standing matter wave structure. From the contrast of this interference pattern, observed by magnetic resonance imaging, we have deduced an energy width of the atom laser beam which is Fourier limited by the duration of output coupling. This gives an upper limit for temporal phase fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure

    Time interval distributions of atoms in atomic beams

    Full text link
    We report on the experimental investigation of two-particle correlations between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein condensate and the atom flux is measured with a single atom counter. We determine the conditional and the unconditional detection probabilities for the atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure

    Optics with an Atom Laser Beam

    Full text link
    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin-flip in the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is measured

    On the transverse mode of an atom laser

    Full text link
    The transverse mode of an atom laser beam that is outcoupled from a Bose-Einstein condensate is investigated and is found to be strongly determined by the mean--field interaction of the laser beam with the condensate. Since for repulsive interactions the geometry of the coupling scheme resembles an interferometer in momentum space, the beam is found show filamentation. Observation of this effect would prove the transverse coherence of an atom laser beam.Comment: 4 pages, 4 figure

    Giant Oscillations of Acoustoelectric Current in a Quantum Channel

    Full text link
    A theory of d.c. electric current induced in a quantum channel by a propagating surface acoustic wave (acoustoelectric current) is worked out. The first observation of the acoustoelectric current in such a situation was reported by J. M. Shilton et al., Journ. Phys. C (to be published). The authors observed a very specific behavior of the acoustoelectric current in a quasi-one-dimensional channel defined in a GaAs-AlGaAs heterostructure by a split-gate depletion -- giant oscillations as a function of the gate voltage. Such a behavior was qualitatively explained by an interplay between the energy-momentum conservation law for the electrons in the upper transverse mode with a finite temperature splitting of the Fermi level. In the present paper, a more detailed theory is developed, and important limiting cases are considered.Comment: 7 pages, 2 Postscript figures, RevTeX 3.

    Quantum statistics of atoms in microstructures

    Get PDF
    This paper proposes groove-like potential structures for the observation of quantum information processing by trapped particles. As an illustration the effect of quantum statistics at a 50-50 beam splitter is investigated. For non-interacting particles we regain the results known from photon experiments, but we have found that particle interactions destroy the perfect bosonic correlations. Fermions avoid each other due to the exclusion principle and hence they are far less sensitive to particle interactions. For bosons, the behavior can be explained with simple analytic considerations which predict a certain amount of universality. This is verified by detailed numerical calculations.Comment: 18 pages incl. 13 figure

    The Low Surface Brightness Extent of the Fornax Cluster

    Get PDF
    We have used a large format CCD camera to survey the nearby Fornax cluster and its immediate environment for low luminosity low surface brightness galaxies. Recent observations indicate that these are the most dark matter dominated galaxies known and so they are likely to be a good tracer of the dark matter in clusters. We have identified large numbers of these galaxies consistent with a steep faint end slope of the luminosity function (alpha~ -2) down to MB ~ -12. These galaxies contribute almost the same amount to the total cluster light as the brighter galaxies and they have a spatial extent that is some four times larger. They satisfy two of the important predictions of N-body hierarchical simulations of structure formation using dark halos. The luminosity (mass ?) function is steep and the mass distribution is more extended than that defined by the brighter galaxies. We also find a large concentration of low surface brightness galaxies around the nearby galaxy NGC1291.Comment: 16 pages, 6 figure

    Quasi-periodic vs. irreversible dynamics of an optically confined Bose-Einstein condensate

    Full text link
    We consider the evolution of a dilute Bose-Einstein condensate in an optical trap formed by a doughnut laser mode. By solving a one dimensional Gross-Pitaevskii equation and looking at the variance and the statistical entropy associated with the position of the system we can study the dynamical behavior of the system. It is shown that for small condensates nonlinear revivals of the macroscopic wave function are expected. For sufficiently large and dense condensates irreversible dynamics takes place for which revivals of regular dynamics appear as predicted in [9]. These results are confirmed by a two dimensional simulation in which the scales of energy associated with the two different directions mimic the experimental situation.Comment: 10 page

    Superfluid to Mott insulator transition in one, two, and three dimensions

    Full text link
    We have created one-, two-, and three-dimensional quantum gases and study the superfluid to Mott insulator transition. Measurements of the transition using Bragg spectroscopy show that the excitation spectra of the low-dimensional superfluids differ significantly from the three-dimensional case

    Sound and Heat Absorption by a 2D Electron Gas in an Odd-Integer Quantized-Hall Regime

    Full text link
    The absorption of bulk acoustic phonons in a two-dimensional (2D) GaAs/AlGaAs heterostructure is studied (in the clean limit) where the 2D electron-gas (2DEG), being in an odd-integer quantum-Hall state, is in fact a spin dielectric. Of the two channels of phonon absorption associated with excitation of spin waves, one, which is due to the spin-orbit (SO) coupling of electrons, involves a change of the spin state of the system and the other does not. We show that the phonon-absorption rate corresponding to the former channel (in the paper designated as the second absorption channel) is finite at zero temperature (TT), whereas that corresponding to the latter (designated as the first channel) vanishes for T→0T\to 0. The long-wavelength limit, being the special case of the first absorption channel, corresponds to sound (bulk and surface) attenuation by the 2DEG. At the same time, the ballistic phonon propagation and heat absorption are determined by both channels. The 2DEG overheat and the attendant spin-state change are found under the conditions of permanent nonequilibrium phonon pumping.Comment: 26 pages, 2 figure
    • …
    corecore