17 research outputs found

    original antigenic Sin: the Downside of Immunological Memory and Implications For Covid-19

    Get PDF
    The concept of original antigenic sin (OAS) was put forth many years ago to explain how humoral memory responses generated against one set of antigens can affect the nature of antibody responses elicited to challenge infections or vaccinations containing a similar but not identical array of antigens. Here, we highlight the link between OAS and the germinal center reaction (GCR), a process unique to activated B cells undergoing somatic hypermutation and class switch recombination. It is the powerful response of activated memory B cells and the accompanying GCR that establish the foundations of OAS. We apply these concepts to the current COVID-19 pandemic and put forth several possible scenarios whereby OAS may result in either beneficial or harmful outcomes depending, hypothetically, on prior exposure to antigens shared between SARS-CoV-2 and seasonal human coronaviruses (hCoVs) that include betacoronaviruses (e.g., HCoV-OC43 and HCoV-HKU1) and alphacoronaviruses (e.g., HCoV-NL63 and HCoV-HKU1) (E. M. Anderson, E. C. Goodwin, A. Verma, C. P. Arevalo, et al., medRxiv, 2020, https://doi.org/10.1101/2020.11.06.20227215; S. M. Kissler, C. Tedijanto, E. Goldstein, Y. H. Grad, and M. Lipsitch, Science 368:860-868, 2020, https://doi.org/10.1126/science.abb5793)

    The Impact of the Th17:Treg axis On the Iga-Biome across the Glycemic Spectrum

    Get PDF
    Secretory IgA (SIgA) is released into mucosal surfaces where its function extends beyond that of host defense to include the shaping of resident microbial communities by mediating exclusion/inclusion of respective microbes and regulating bacterial gene expression. In this capacity, SIgA acts as the fulcrum on which host immunity and the health of the microbiota are balanced. We recently completed an analysis of the gut and salivary IgA-Biomes (16S rDNA sequencing of SIgA-coated/uncoated bacteria) in Mexican-American adults that identified IgA-Biome differences across the glycemic spectrum. As Th17:Treg ratio imbalances are associated with gut microbiome dysbiosis and chronic inflammatory conditions such as type 2 diabetes, the present study extends our prior work by examining the impact of Th17:Treg ratios (pro-inflammatory:anti-inflammatory T-cell ratios) and the SIgA response (Th17:Treg-SIgA axis) in shaping microbial communities. Examining the impact of Th17:Treg ratios (determined by epigenetic qPCR lymphocyte subset quantification) on the IgA-Biome across diabetes phenotypes identified a proportional relationship between Th17:Treg ratios and alpha diversity in the stool IgA-Biome of those with dysglycemia, significant changes in community composition of the stool and salivary microbiomes across glycemic profiles, and genera preferentially abundant by T-cell inflammatory phenotype. This is the first study to associate epigenetically quantified Th17:Treg ratios with both the larger and SIgA-fractionated microbiome, assess these associations in the context of a chronic inflammatory disease, and offers a novel frame through which to evaluate mucosal microbiomes in the context of host responses and inflammation

    Worsening Glycemia increases the Odds of intermittent But Not Persistent Staphylococcus aureus Nasal Carriage in Two Cohorts of Mexican american adults

    Get PDF
    Numerous host and environmental factors contribute to persistent and intermittent nasal Staphylococcus aureus carriage in humans. The effects of worsening glycemia on the odds of S. aureus intermittent and persistent nasal carriage was established in two cohorts from an adult Mexican American population living in Starr County, Texas. The anterior nares were sampled at two time points and the presence of S. aureus determined by laboratory culture an

    Epidemiology of antibiotic Use and Drivers of Cross-Border Procurement in a Mexican american Border Community

    Get PDF
    BACKGROUND: The U.S.-Mexico Border is an area of opportunity for improved health care access; however, gaps remain as to how and where U.S. border residents, particularly those who are underinsured, obtain care. Antibiotics are one of the most common reported drivers of cross-border healthcare access and a medication of particular concern since indiscriminate or inappropriate use is associated with antimicrobial resistance. In addition, many studies assessing preferences for Mexican pharmaceuticals and healthcare in U.S. border residents were done prior to 2010 when many prescription medications, including antibiotics, were available over the counter in Mexico. METHODS: Data used in this study were collected during the baseline examination of an ongoing longitudinal cohort study in Starr Country, Texas, one of 14 counties on the Texas-Mexico border. Participants self-reported the name, date of use, and the source country of each antibiotic used in the past 12 months. Logistic regression was used to determine social, cultural, and clinical features associated with cross-border procurement of antibiotics. RESULTS: Over 10% of the study cohort reported using antibiotics in the past 30 days with over 60% of all rounds used in the past 12 months sourced from Mexico. A lack of health insurance and generation score, a measure of acculturation, were the strongest predictors of cross-border procurement of antibiotics. CONCLUSIONS: Factors previously associated with cross-border acquisition of antibiotics are still present despite changes in 2010 to prescription drug regulations in Mexico. These results may be used to inform future public health initiatives to provide culturally sensitive education about responsible antibiotic stewardship and to address barriers to U.S. healthcare and pharmaceutical access in medically underserved, impoverished U.S.-Mexico border communities

    Iga-Biome Profiles Correlate With Clinical Parkinson\u27s Disease Subtypes

    Get PDF
    BACKGROUND: Parkinson\u27s disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE: Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson\u27s disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS: Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS: IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson\u27s disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION: IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches

    Iga-Biome Profiles Correlate With Clinical Parkinson\u27s Disease Subtypes

    Get PDF
    BACKGROUND: Parkinson\u27s disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE: Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson\u27s disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS: Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS: IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson\u27s disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION: IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches

    Fecal Microbiota Transplantation in Parkinson’s Disease-A Randomized Repeat-Dose, Placebo-Controlled Clinical Pilot Study

    Get PDF
    BACKGROUND AND PURPOSE: The intestinal microbiome plays a primary role in the pathogenesis of neurodegenerative disorders and may provide an opportunity for disease modification. We performed a pilot clinical study looking at the safety of fecal microbiota transplantation (FMT), its effect on the microbiome, and improvement of symptoms in Parkinson\u27s disease. METHODS: This was a randomized, double-blind placebo-controlled pilot study, wherein orally administered lyophilized FMT product or matching placebo was given to 12 subjects with mild to moderate Parkinson\u27s disease with constipation twice weekly for 12 weeks. Subjects were followed for safety and clinical improvement for 9 additional months (total study duration 12 months). RESULTS: Fecal microbiota transplantation caused non-severe transient upper gastrointestinal symptoms. One subject receiving FMT was diagnosed with unrelated metastatic cancer and was removed from the trial. Beta diversity (taxa) of the microbiome, was similar comparing placebo and FMT groups at baseline, however, for subjects randomized to FMT, it increased significantly at 6 weeks ( CONCLUSIONS: Subjects with Parkinson\u27s disease tolerated multi-dose-FMT, and experienced increased diversity of the intestinal microbiome that was associated with reduction in constipation and improved gut transit and intestinal motility. Fecal microbiota transplantation administration improved subjective motor and non-motor symptoms. CLINICAL TRIAL REGISTRATION: ClinicalTrial.gov, identifier: NCT03671785

    Impact of Diabetes On the Gut and Salivary Iga Microbiomes

    Get PDF
    Mucosal surfaces like those present in the lung, gut, and mouth interface with distinct external environments. These mucosal gateways are not only portals of entry for potential pathogens but also homes to microbial communities that impact host health. Secretory immunoglobulin A (SIgA) is the single most abundant acquired immune component secreted onto mucosal surfaces and, via the process of immune exclusion, shapes the architecture of these microbiomes. Not all microorganisms at mucosal surfaces are targeted by SIgA; therefore, a better understanding of the SIgA-coated fraction may identify the microbial constituents that stimulate host immune responses in the context of health and disease. Chronic diseases like type 2 diabetes are associated with altered microbial communities (dysbiosis) that in turn affect immune-mediated homeostasis. 16S rRNA gene sequencing of SIgA-coated/uncoated bacteria (IgA-Biome) was conducted on stool and saliva samples of normoglycemic participants and individuals with prediabetes or diabetes

    The effects of a novel Clostridium difficile quorum sensing molecule on growth and virulence factor production in Staphylococcus aureus

    Full text link
    S. aureus infections range from minor skin diseases to life-threatening invasive infections, with treatments for all infections becoming increasingly difficult as a result of rising rates of antibiotic resistance and a paucity of novel antibiotics. As no S. aureus vaccines currently exist nor are likely to be developed in the near future, development of novel therapies is warranted. One potential option is the exploitation of bacterial quorum sensing systems to manipulate virulence factor production and growth. Since significant similarities exist between the quorum sensing systems of C. difficile and S. aureus, we investigated the effect of a recently described a quorum-sensing molecule (TI) that induces Clostridium difficile toxin production on S. aureus growth and virulence. The results demonstrated that TI affects S. aureus strains in a dose-dependent fashion, causes up- and down-regulation of numerous genes, including down regulation of many secreted toxins, and produces a dose-dependent biphasic effect in the production of excreted toxins LukS-PV and Hla in a manner independent of bacterial growth. There was no observable effect on biofilm production. These data suggest that the TI could potentially be exploited for the development of antibiotic independent S. aureus treatment strategies

    Genome-Wide Association Study of Staphylococcus aureus Carriage in a Community-Based Sample of Mexican-Americans in Starr County, Texas.

    Full text link
    Staphylococcus aureus is the number one cause of hospital-acquired infections. Understanding host pathogen interactions is paramount to the development of more effective treatment and prevention strategies. Therefore, whole exome sequence and chip-based genotype data were used to conduct rare variant and genome-wide association analyses in a Mexican-American cohort from Starr County, Texas to identify genes and variants associated with S. aureus nasal carriage. Unlike most studies of S. aureus that are based on hospitalized populations, this study used a representative community sample. Two nasal swabs were collected from participants (n = 858) 11-17 days apart between October 2009 and December 2013, screened for the presence of S. aureus, and then classified as either persistent, intermittent, or non-carriers. The chip-based and exome sequence-based single variant association analyses identified 1 genome-wide significant region (KAT2B) for intermittent and 11 regions suggestively associated with persistent or intermittent S. aureus carriage. We also report top findings from gene-based burden analyses of rare functional variation. Notably, we observed marked differences between signals associated with persistent and intermittent carriage. In single variant analyses of persistent carriage, 7 of 9 genes in suggestively associated regions and all 5 top gene-based findings are associated with cell growth or tight junction integrity or are structural constituents of the cytoskeleton, suggesting that variation in genes associated with persistent carriage impact cellular integrity and morphology
    corecore