3 research outputs found

    Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites

    No full text
    In this work, mechanical properties of reinforced polypropylene composites were studied. PP in particulates shape with two different melt flow indexes (MFI) was used, i.e., 3 and 23 g/10 min, namely PP3 and PP23, respectively. Three different materials, namely TiO2 nanoparticle (nTiO2, spherical, 0D), micro-size short carbon fiber (SCF, fiber, 1D), and graphite nanoplatelet (GNP, sheet, 2D), were used as reinforcements/fillers. PP and fillers (in the desired composition) were first pre-mixed by a mechanical mixer. The mixture was then fed to a co-rotating twin-screw extruder for melt-compounding, followed by injection molding to fabricate testing samples. The microstructure and fracture surface of the composites were observed by a scanning electron microscope (SEM). Additionally, tensile, flexural, impact, and hardness tests were conducted to evaluate their mechanical properties. The SEM images stipulate that PP23 had better adhesion and dispersion with the fillers. The results from the SEM images support the mechanical testing results. PP23 composites exhibited more significant improvement in mechanical properties in comparison to PP3. At 5 wt. % filler loading, PP/GNP composite exhibited a greater improvement in mechanical properties compared with two other composites, which are PP/SCF and PP/nTiO2 composites for both PPs

    Mechanical and Physical Properties of Short Carbon Fiber and Nanofiller-Reinforced Polypropylene Hybrid Nanocomposites

    No full text
    The effect of various combinations of filler materials on the performance of polypropylene (PP)-based composites was investigated. PP in particulate form was used as the matrix. Milled short carbon fiber (SCF) micro-size, graphite nano-platelet (GNP), and titanium dioxide nanoparticles (nTiO2) were used as fillers. These fillers were incorporated in the polymer matrix to produce mono-filler (PP/SCF and PP/nanofiller) and hybrid composites. Hybrid composites consist of PP/10SCF/GNP, PP/10SCF/nTiO2, and PP/10SCF/GNP/nTiO2. The effect of the addition of SCF, GNP, and nTiO2 on PP-based composites was investigated by analyzing their morphological, mechanical, and physical properties. The addition of mono-filler to the PP matrix improved the mechanical properties of the composites when compared to the neat PP. The ultimate tensile strength (UTS), flexural modulus, flexural strength, and impact toughness of the hybrid composites with 15 wt % total loading of fillers, were higher than that of mono-filler composites with 15 wt % SCF (PP/15SCF). A maximum increase of 20% in the flexural modulus was observed in the hybrid composite with 10 wt % of SCF with the additional of 2.5 wt % GNP and 2.5 wt % nTiO2 when compared to PP/15SCF composite. The addition of 2.5 wt % nTiO2 to the 10 wt % SCF reinforced PP, resulted in increasing the strain at break by 15% when compared to the PP/10SCF composite. A scanning electron microscope image of the PP/10SCF composite with the addition of GNP improved the interfacial bonding between PP and SCF compared with PP/SCF alone. A decrease in the melt flow index (MFI) was observed for all compositions. However, hybrid composites showed a higher decrease in MFI

    Ductile to Brittle Transition of Short Carbon Fiber-Reinforced Polypropylene Composites

    No full text
    In this work, the ductile to brittle transition behavior of short carbon fiber (SCF)-reinforced polypropylene (PP) composite is studied. Initially, the SCF-reinforced PP composites with a varying composition of SCF in the range of 0–40 wt% loading were first melt-mixed in a twin-screw extruder and later injection-molded to produce the testing samples. The experimental results indicate that with an increase in SCF loading, an increase in the tensile modulus and strength was observed along with a rapid decrease in the values of strain at break. A sudden decrease in strain at break was observed in composites in the range of 10–15 wt% SCF. To further study the sudden decrease in strain at break, an investigation was performed on composites that contained 10–15 wt% of SCF loading, starting from 10 wt% with a 1% increment to 15 wt% of SCF. The results of this study show that a decrease in strain at break was not linear; on the contrary, it was accompanied by a ductile to brittle transition, which specifically occurred in the range of 12–13 wt% of SCF loading and then continued to decrease with an increase in SCF loading
    corecore