19 research outputs found

    Nutrient and herbivore alterations cause uncoupled changes in producer diversity, biomass and ecosystem function, but not in overall multifunctionality

    Get PDF
    Altered nutrient cycles and consumer populations are among the top anthropogenic influences on ecosystems. However, studies on the simultaneous impacts of human-driven environmental alterations on ecosystem functions, and the overall change in system multifunctionality are scarce. We used estuarine tidal flats to study the effects of changes in herbivore density and nutrient availability on benthic microalgae (diversity, abundance and biomass) and ecosystem functions (N2-fixation, denitrification, extracellular polymeric substances -EPS- as a proxy for sediment cohesiveness, sediment water content as a proxy of water retention capacity and sediment organic matter). We found consistent strong impacts of modified herbivory and weak effects of increased nutrient availability on the abundance, biomass and diversity of benthic microalgae. However, the effects on specific ecosystem functions were disparate. Some functions were independently affected by nutrient addition (N2-fixation), modified herbivory (sediment organic matter and water content), or their interaction (denitrification), while others were not affected (EPS). Overall system multifunction remained invariant despite changes in specific functions. This study reveals that anthropogenic pressures can induce decoupled effects between community structure and specific ecosystem functions. Our results highlight the need to address several ecosystem functions simultaneously for better ecosystem characterization and management.Instituto de Limnología "Dr. Raul A. Ringuelet

    Nutrient and herbivore alterations cause uncoupled changes in producer diversity, biomass and ecosystem function, but not in overall multifunctionality

    Get PDF
    Altered nutrient cycles and consumer populations are among the top anthropogenic influences on ecosystems. However, studies on the simultaneous impacts of human-driven environmental alterations on ecosystem functions, and the overall change in system multifunctionality are scarce. We used estuarine tidal flats to study the effects of changes in herbivore density and nutrient availability on benthic microalgae (diversity, abundance and biomass) and ecosystem functions (N2-fixation, denitrification, extracellular polymeric substances -EPS- as a proxy for sediment cohesiveness, sediment water content as a proxy of water retention capacity and sediment organic matter). We found consistent strong impacts of modified herbivory and weak effects of increased nutrient availability on the abundance, biomass and diversity of benthic microalgae. However, the effects on specific ecosystem functions were disparate. Some functions were independently affected by nutrient addition (N2-fixation), modified herbivory (sediment organic matter and water content), or their interaction (denitrification), while others were not affected (EPS). Overall system multifunction remained invariant despite changes in specific functions. This study reveals that anthropogenic pressures can induce decoupled effects between community structure and specific ecosystem functions. Our results highlight the need to address several ecosystem functions simultaneously for better ecosystem characterization and management.Instituto de Limnología "Dr. Raul A. Ringuelet

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    Abstract The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared to information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known non-pathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification. This article is protected by copyright. All rights reserved.Peer reviewe

    Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing

    Get PDF
    Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasmonic metasurface forming the resonant body of a nanomechanical resonator with simultaneously tailored optical and electromechanical properties. We experimentally demonstrate that it is possible to achieve high thermomechanical coupling between electromagnetic and mechanical resonances in a single ultrathin piezoelectric nanoplate. The combination of nanoplasmonic and piezoelectric resonances allows the proposed device to selectively detect long-wavelength infrared radiation with unprecedented electromechanical performance and thermal capabilities. These attributes lead to the demonstration of a fast, high-resolution, uncooled infrared detector with ∼80% absorption for an optimized spectral bandwidth centered around 8.8 μm

    A prospective analysis of the association between macronutrient intake and renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition.

    No full text
    Previous case-control studies have suggested that a high intake of animal foods and its associated nutrients are associated with an increased risk of renal cell carcinoma, although data from prospective studies are limited. We report here on the relationship between macronutrient intake and renal cell carcinoma incidence among 435,293 participants enrolled in the European Prospective Investigation into Cancer and Nutrition. Cox proportional hazard models were used to examine the association of dietary intake of fat, protein, carbohydrate, fiber and cholesterol and risk of renal cell carcinoma adjusted for age, sex, center, height, body mass index, physical activity, education, smoking, menopausal status, alcohol and energy intake. During an average 8.8 years of follow-up, 507 renal cell carcinoma cases occurred. Risk of renal cell carcinoma was not associated with macronutrient intake, including nutrients derived from animal sources. Our results indicate that macronutrient intake is not associated with risk of renal cell carcinoma in this cohort of European men and women
    corecore