16,204 research outputs found

    Alpha Surfaces for Complex Space-Times with Torsion

    Full text link
    This paper studies necessary conditions for the existence of alpha-surfaces in complex space-time manifolds with nonvanishing torsion. For these manifolds, Lie brackets of vector fields and spinor Ricci identities contain explicitly the effects of torsion. This leads to an integrability condition for alpha-surfaces which does not involve just the self-dual Weyl spinor, as in complex general relativity, but also the torsion spinor, in a nonlinear way, and its covariant derivative. Interestingly, a particular solution of the integrability condition is given by conformally right-flat and right-torsion-free space-times.Comment: 7 pages, plain-tex, published in Nuovo Cimento B, volume 108, pages 123-125, year 199

    A note on Fontaine theory using different Lubin-Tate groups

    Full text link
    Using different Lubin-Tate groups, we compare (ϕ,Γ)(\phi, \Gamma) modules associated to a Galois representation via Fontaine's theory

    Binary Fluids with Long Range Segregating Interaction I: Derivation of Kinetic and Hydrodynamic Equations

    Get PDF
    We study the evolution of a two component fluid consisting of ``blue'' and ``red'' particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scalings and system parameters we first obtain (formally) a mesoscopic kinetic Vlasov-Boltzmann equation for the one particle position and velocity distribution functions, appropriate for a description of the phase segregation kinetics in this system. Further scalings then yield Vlasov-Euler and incompressible Vlasov-Navier-Stokes equations. We also obtain, via the usual truncation of the Chapman-Enskog expansion, compressible Vlasov-Navier-Stokes equations.Comment: TeX, 50 page

    Kinetics of a Model Weakly Ionized Plasma in the Presence of Multiple Equilibria

    Get PDF
    We study, globaly in time, the velocity distribution f(v,t)f(v,t) of a spatially homogeneous system that models a system of electrons in a weakly ionized plasma, subjected to a constant external electric field EE. The density ff satisfies a Boltzmann type kinetic equation containing a full nonlinear electron-electron collision term as well as linear terms representing collisions with reservoir particles having a specified Maxwellian distribution. We show that when the constant in front of the nonlinear collision kernel, thought of as a scaling parameter, is sufficiently strong, then the L1L^1 distance between ff and a certain time dependent Maxwellian stays small uniformly in tt. Moreover, the mean and variance of this time dependent Maxwellian satisfy a coupled set of nonlinear ODE's that constitute the ``hydrodynamical'' equations for this kinetic system. This remain true even when these ODE's have non-unique equilibria, thus proving the existence of multiple stabe stationary solutions for the full kinetic model. Our approach relies on scale independent estimates for the kinetic equation, and entropy production estimates. The novel aspects of this approach may be useful in other problems concerning the relation between the kinetic and hydrodynamic scales globably in time.Comment: 30 pages, in TeX, to appear in Archive for Rational Mechanics and Analysis: author's email addresses: [email protected], [email protected], [email protected], [email protected], [email protected]

    A New Family of Gauges in Linearized General Relativity

    Get PDF
    For vacuum Maxwell theory in four dimensions, a supplementary condition exists (due to Eastwood and Singer) which is invariant under conformal rescalings of the metric, in agreement with the conformal symmetry of the Maxwell equations. Thus, starting from the de Donder gauge, which is not conformally invariant but is the gravitational counterpart of the Lorenz gauge, one can consider, led by formal analogy, a new family of gauges in general relativity, which involve fifth-order covariant derivatives of metric perturbations. The admissibility of such gauges in the classical theory is first proven in the cases of linearized theory about flat Euclidean space or flat Minkowski space-time. In the former, the general solution of the equation for the fulfillment of the gauge condition after infinitesimal diffeomorphisms involves a 3-harmonic 1-form and an inverse Fourier transform. In the latter, one needs instead the kernel of powers of the wave operator, and a contour integral. The analysis is also used to put restrictions on the dimensionless parameter occurring in the DeWitt supermetric, while the proof of admissibility is generalized to a suitable class of curved Riemannian backgrounds. Eventually, a non-local construction is obtained of the tensor field which makes it possible to achieve conformal invariance of the above gauges.Comment: 28 pages, plain Tex. In the revised version, sections 4 and 5 are completely ne
    • …
    corecore