24 research outputs found

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Conopeptides promote itch through human itch receptor hMgprX1

    No full text
    Members of Mas related G-protein coupled receptors (Mrgpr) are known to mediate itch. To date, several compounds have been shown to activate these receptors, including chloroquine, a common antimalarial drug, and peptides of the RF-amide family. However, specific ligands for these receptors are still lacking and there is a need for novel compounds that can be used to modulate the receptors in order to understand the cellular and molecular mechanism in which they mediate itch. Some cone snail venoms were previously shown to induce itch in mice. Here, we show that the venom of Conus textile induces itch through activation of itch-sensing sensory neurons, marked by their sensitivity to chloroquine. Two RF-amide peptides, CNF-Tx1 and CNF-Tx2, were identified in a C. textile venom gland transcriptome. These belong to the conorfamide family of peptides which includes previously described peptides from the venoms of Conus victoriae (CNF-Vc1) and Conus spurius (CNF-Sr1 and CNF-Sr2). We show that CNF-Vc1 and CNF-Sr1 activate MrgprC11 whereas CNF-Vc1 and CNF-Tx2 activate the human MrgprX1 (hMrgprX1). The peptides CNF-Tx1 and CNF-Sr2 do not activate MrgprC11 or hMrgprX1. Intradermal injection of CNF-Vc1 and CNF-Tx2 into the cheek of a transgenic mouse expressing hMrgprX1 instead of endogenous mouse Mrgprs resulted in itch-related scratching thus demonstrating the in vivo activity of these peptides. Using truncated analogues of CNF-Vc1, we identified amino acids at positions 7-18 as important for activity against hMrgprX1. The conopeptides reported here are tools that can be used to advance our understanding of the cellular and molecular mechanism of itch mediated by Mrgprs

    Structure and activity of contryphan-Vc2: Importance of the D-amino acid residue

    No full text
    In natural proteins and peptides, amino acids exist almost invariably as L-isomers. There are, however, several examples of naturally-occurring peptides containing D-amino acids. In this study we investigated the role of a naturally-occurring D-amino acid in a small peptide identified in the transcriptome of a marine cone snail. This peptide belongs to a family of peptides known as contryphans, all of which contain a single D-amino acid residue. The solution structure of this peptide was solved by NMR, but further investigations with molecular dynamics simulations suggest that its solution behaviour may be more dynamic than suggested by the NMR ensemble. Functional tests in mice uncovered a novel bioactivity, a depressive phenotype that contrasts with the hyperactive phenotypes typically induced by contryphans. Trp3 is important for bioactivity, but this role is independent of the chirality at this position. The D-chirality of Trp3 in this peptide was found to be protective against enzymatic degradation. Analysis by NMR and molecular dynamics simulations indicated an interaction of Trp3 with lipid membranes, suggesting the possibility of a membrane-mediated mechanism of action for this peptide

    Structure and biological activity of a turripeptide from Unedogemmula bisaya venom

    No full text
    The turripeptide ubi3a was isolated from the venom of the marine gastropod Unedogemmula bisaya, family Turridae, by bioassay-guided purification; both native and synthetic ubi3a elicited prolonged tremors when injected intracranially into mice. The sequence of the peptide, DCCOCOAGAVRCRFACC-NH2 (O = 4-hydroxyproline) follows the framework III pattern for cysteines (CC-C-C-CC) in the M-superfamily of conopeptides. The three-dimensional structure determined by NMR spectroscopy indicated a disulfide connectivity that is not found in conopeptides with the cysteine framework III: C-1-C-4, C-2-C-6, C-3-C-5. The peptide inhibited the activity of the alpha 9 alpha 10 nicotinic acetylcholine receptor with relatively low affinity (IC50, 10.2 mu M). Initial Constellation Pharmacology data revealed an excitatory activity of ubi3a on a specific subset of mouse dorsal root ganglion neurons

    Non-Peptidic Small Molecule Components from Cone Snail Venoms

    No full text
    Venomous molluscs (Superfamily Conoidea) comprise a substantial fraction of tropical marine biodiversity (\u3e15,000 species). Prior characterization of cone snail venoms established that bioactive venom components used to capture prey, defend against predators and for competitive interactions were relatively small, structured peptides (10–35 amino acids), most with multiple disulfide crosslinks. These venom components (“conotoxins, conopeptides”) have been widely studied in many laboratories, leading to pharmaceutical agents and probes. In this review, we describe how it has recently become clear that to varying degrees, cone snail venoms also contain bioactive non-peptidic small molecule components. Since the initial discovery of genuanine as the first bioactive venom small molecule with an unprecedented structure, a broad set of cone snail venoms have been examined for non-peptidic bioactive components. In particular, a basal clade of cone snails (Stephanoconus) that prey on polychaetes produce genuanine and many other small molecules in their venoms, suggesting that this lineage may be a rich source of non-peptidic cone snail venom natural products. In contrast to standing dogma in the field that peptide and proteins are predominantly used for prey capture in cone snails, these small molecules also contribute to prey capture and push the molecular diversity of cone snails beyond peptides. The compounds so far characterized are active on neurons and thus may potentially serve as leads for neuronal diseases. Thus, in analogy to the incredible pharmacopeia resulting from studying venom peptides, these small molecules may provide a new resource of pharmacological agents
    corecore