2 research outputs found

    Capacity of National Malaria Control Programmes to implement vector surveillance: a global analysis

    Get PDF
    Background: Solving the problem of malaria requires a highly skilled workforce with robust infrastructure, financial backing and sound programme management coordinated by a strategic plan. Here, the capacity of National Malaria Control Programmes (NMCPs) was analysed to identify the strengths and weaknesses underpinning the implementation of vector surveillance and control activities by the core elements of programme capacity, being strategic frameworks, financing, human resources, logistics and infrastructure, and information systems. Results: Across nearly every country surveyed, the vector surveillance programmes were hampered by a lack of capacity and capability. Only 8% of NMCPs reported having sufficient capacity to implement vector surveillance. In contrast, 57%, 56% and 28% of NMCPs had the capacity to implement long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS) and larval source management (LSM) activities, respectively. Largely underlying this was a lack of up-to-date strategic plans that prioritize vector surveillance and include frameworks for decision-making and action. Conclusions: Strategic planning and a lack of well-trained entomologists heavily hamper vector surveillance. Countries on the path to elimination generally had more operational/field staff compared to countries at the stage of control, and also were more likely to have an established system for staff training and capacity building. It is unlikely that controlling countries will make significant progress unless huge investments also go towards increasing the number and capacity of programmatic staff

    A global analysis of National Malaria Control Programme vector surveillance by elimination and control status in 2018

    Get PDF
    Background: Maintaining the effectiveness of the currently recommended malaria vector control interventions while integrating new interventions will require monitoring key recommended indicators to identify threats to effectiveness including physiological and behavioural resistance to insecticides. Methods: Country metadata on vector surveillance and control activities was collected using an online survey by National Malaria Control Programmes or partner organization officials. Country and regional surveillance activities were analysed for alignment with indicators for priority vector surveillance objectives recommended by the World Health Organization. Surveillance activities were also compared for countries in the E2020 (eliminating countries) and countries with more intense transmission. Results: Significant differences in monitoring priority vector indicators between Africa and Asia-Pacific country programmes were found as well as differences between countries approaching elimination and those controlling malaria. Gaps were found between vector data collected and country management strategies (i.e., for insecticide resistance management and integrated vector control strategies) and for making programmatic decisions on surveillance and control using vector surveillance data. Conclusions: Significant opportunities exist for increasing vector data collection on priority indicators and using these data for national programmatic decisions for both proactive insecticide resistance management and enhancing vector control
    corecore