3 research outputs found

    Design of a high power production target for the Beam Dump Facility at CERN

    Full text link
    The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure

    Beam impact tests of a prototype target for the Beam Dump Facility at CERN: experimental setup and preliminary analysis of the online results

    No full text
    The Beam Dump Facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for Light Dark Matter and Hidden Sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the Beam Dump Facility target was achieved during the prototype tests, which will be complemented by a Post Irradiation Examination campaign during 2020.The beam dump facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for light dark matter and hidden sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400  GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured, and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the beam dump facility target was achieved during the prototype tests, which will be complemented by a postirradiation examination campaign during 2020

    SPS Beam Dump Facility - Comprehensive Design Study

    No full text
    The proposed Beam Dump Facility (BDF) is foreseen to be located in the North Area of the Super Proton Synchrotron (SPS). It is designed to be able to serve both beam-dump-like and fixed-target experiments. The SPS and the new facility would offer unique possibilities to enter a new era of exploration at the intensity frontier. Possible options include searches for very weakly interacting particles predicted by Hidden Sector models, and flavour physics measurements. Following the first evaluation of the BDF in 2014–2016, CERN management launched a Comprehensive Design Study over three years for the BDF. The BDF study team has executed an in-depth feasibility study of proton delivery to target, the target complex, and the underground experimental area, including prototyping of key subsystems and evaluations of radiological aspects and safety. A first iteration of detailed integration and civil engineering studies has been performed to produce a realistic schedule and cost. This document gives a detailed overview of the proposed facility together with the results of the in-depth studies, and draws up a road map and project plan for a three years Technical Design Report phase and a five–six years construction phase.The proposed Beam Dump Facility (BDF) is foreseen to be located in the North Area of the Super Proton Synchrotron (SPS). It is designed to be able to serve both beam-dump-like and fixed-target experiments. The SPS and the new facility would offer unique possibilities to enter a new era of exploration at the intensity frontier. Possible options include searches for very weakly interacting particles predicted by Hidden Sector models, and flavour physics measurements. Following the first evaluation of the BDF in 2014–2016, CERN management launched a Comprehensive Design Study over three years for the BDF. The BDF study team has executed an in-depth feasibility study of proton delivery to target, the target complex, and the underground experimental area, including prototyping of key subsystems and evaluations of radiological aspects and safety. A first iteration of detailed integration and civil engineering studies has been performed to produce a realistic schedule and cost. This document gives a detailed overview of the proposed facility together with the results of the in-depth studies, and draws up a road map and project plan for a three years Technical Design Report phase and a five–six years construction phase
    corecore