496 research outputs found
How high frequency trading affects a market index
The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale.We would like to thank Yoash Shapira, Idan Michaeli and Dustin Plotnick for all of their help. DYK and EBJ acknowledge support in part by the Tauber Family Foundation and the Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University. HES and DYK thank the support of the Office of Naval Research (ONR, Grant N00014-09-1-0380, Grant N00014-12-1-0548), Keck Foundation and the NSF (Grant CMMI 1125290) for support. This work was also supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract number D12PC00285. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government. (Tauber Family Foundation; Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University; N00014-09-1-0380 - Office of Naval Research (ONR); N00014-12-1-0548 - Office of Naval Research (ONR); Keck Foundation; CMMI 1125290 - NSF; D12PC00285 - Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center (DoI/NBC))Published versio
Dynamics of Stock Market Correlations
We present a novel approach to the study the dynamics of stock market correlations. This is achieved through an innovative visualization tool that allows an investigation of the structure and dynamics of the market, through the study of correlations. This is based on the Stock Market Holography (SMH) method recently introduced. This qualitative measure is complemented by the use of the eigenvalue entropy measure, to quantify how the information in the market changes in time. Using this innovative approach, we analyzed data from the New York Stock Exchange (NYSE), and the Tel Aviv Stock Exchange (TASE), for daily trading data for the time period of 2000–2009. This paper covers these new concepts for the study of financial markets in terms of structure and information as reflected by the changes in correlations over time.Correlation, Stock Market Holography, eigenvalue entropy, sliding window
Dynamic instabilities induced by asymmetric influence: Prisoners' dilemma game on small-world networks
A two-dimensional small-world type network, subject to spatial prisoners'
dilemma dynamics and containing an influential node defined as a special node
with a finite density of directed random links to the other nodes in the
network, is numerically investigated. It is shown that the degree of
cooperation does not remain at a steady state level but displays a punctuated
equilibrium type behavior manifested by the existence of sudden breakdowns of
cooperation. The breakdown of cooperation is linked to an imitation of a
successful selfish strategy of the influential node. It is also found that
while the breakdown of cooperation occurs suddenly, the recovery of it requires
longer time. This recovery time may, depending on the degree of steady state
cooperation, either increase or decrease with an increasing number of long
range connections.Comment: 5 pages, 6 figure
A neuronal enhancer network upstream of MEF2C is compromised in patients with Rett-like characteristics
Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing (4C-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome
Statistically validated networks in bipartite complex systems
Many complex systems present an intrinsic bipartite nature and are often
described and modeled in terms of networks [1-5]. Examples include movies and
actors [1, 2, 4], authors and scientific papers [6-9], email accounts and
emails [10], plants and animals that pollinate them [11, 12]. Bipartite
networks are often very heterogeneous in the number of relationships that the
elements of one set establish with the elements of the other set. When one
constructs a projected network with nodes from only one set, the system
heterogeneity makes it very difficult to identify preferential links between
the elements. Here we introduce an unsupervised method to statistically
validate each link of the projected network against a null hypothesis taking
into account the heterogeneity of the system. We apply our method to three
different systems, namely the set of clusters of orthologous genes (COG) in
completely sequenced genomes [13, 14], a set of daily returns of 500 US
financial stocks, and the set of world movies of the IMDb database [15]. In all
these systems, both different in size and level of heterogeneity, we find that
our method is able to detect network structures which are informative about the
system and are not simply expression of its heterogeneity. Specifically, our
method (i) identifies the preferential relationships between the elements, (ii)
naturally highlights the clustered structure of investigated systems, and (iii)
allows to classify links according to the type of statistically validated
relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary
information: 15 pages, 3 figures, and 2 Table
Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions
We study a 1-D array of Josephson coupled superconducting grains with kinetic
inductance which dominates over the Josephson inductance. In this limit the
dynamics of excess Cooper pairs in the array is described in terms of charge
solitons, created by polarization of the grains. We analyze the dynamics of
these topological excitations, which are dual to the fluxons in a long
Josephson junction, using the continuum sine-Gordon model. We find that their
classical relativistic motion leads to saturation branches in the I-V
characteristic of the array. We then discuss the semi-classical quantization of
the charge soliton, and show that it is consistent with the large kinetic
inductance of the array. We study the dynamics of a quantum charge soliton in a
ring-shaped array biased by an external flux through its center. If the
dephasing length of the quantum charge soliton is larger than the circumference
of the array, quantum phenomena like persistent current and coherent current
oscillations are expected. As the characteristic width of the charge soliton is
of the order of 100 microns, it is a macroscopic quantum object. We discuss the
dephasing mechanisms which can suppress the quantum behaviour of the charge
soliton.Comment: 26 pages, LaTex, 7 Postscript figure
Traffic Instabilities in Self-Organized Pedestrian Crowds
In human crowds as well as in many animal societies, local interactions among
individuals often give rise to self-organized collective organizations that
offer functional benefits to the group. For instance, flows of pedestrians
moving in opposite directions spontaneously segregate into lanes of uniform
walking directions. This phenomenon is often referred to as a smart collective
pattern, as it increases the traffic efficiency with no need of external
control. However, the functional benefits of this emergent organization have
never been experimentally measured, and the underlying behavioral mechanisms
are poorly understood. In this work, we have studied this phenomenon under
controlled laboratory conditions. We found that the traffic segregation
exhibits structural instabilities characterized by the alternation of organized
and disorganized states, where the lifetime of well-organized clusters of
pedestrians follow a stretched exponential relaxation process. Further analysis
show that the inter-pedestrian variability of comfortable walking speeds is a
key variable at the origin of the observed traffic perturbations. We show that
the collective benefit of the emerging pattern is maximized when all
pedestrians walk at the average speed of the group. In practice, however, local
interactions between slow- and fast-walking pedestrians trigger global
breakdowns of organization, which reduce the collective and the individual
payoff provided by the traffic segregation. This work is a step ahead toward
the understanding of traffic self-organization in crowds, which turns out to be
modulated by complex behavioral mechanisms that do not always maximize the
group's benefits. The quantitative understanding of crowd behaviors opens the
way for designing bottom-up management strategies bound to promote the
emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available
here:
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244
Phase Locking Induces Scale-Free Topologies in Networks of Coupled Oscillators
An initial unsynchronized ensemble of networking phase oscillators is further subjected to a growing process where a set of forcing oscillators, each one of them following the dynamics of a frequency pacemaker, are added to the pristine graph. Linking rules based on dynamical criteria are followed in the attachment process to force phase locking of the network with the external pacemaker. We show that the eventual locking occurs in correspondence to the arousal of a scale-free degree distribution in the original graph
Structure of Fat Jets at the Tevatron and Beyond
Boosted resonances is a highly probable and enthusiastic scenario in any
process probing the electroweak scale. Such objects when decaying into jets can
easily blend with the cornucopia of jets from hard relative light QCD states.
We review jet observables and algorithms that can contribute to the
identification of highly boosted heavy jets and the possible searches that can
make use of such substructure information. We also review previous studies by
CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era"
issue of The European Physical Journal C, we invite comments regarding
contents of the review; v2 added references and institutional preprint
number
- …