1,013 research outputs found
Study, fabrication and testing of a foil-bearing rotor support system
High speed foil bearing rotor support syste
The dynamic behavior of a foil in the presence of a lubricating film
Dynamic response of foil to lubricating fluid fil
A NONPARAMETRIC TEST OF ADVERTISING'S EFFECTIVENESS
Nonparametric demand analysis uses axioms of revealed preference to test a data set for compatibility with the hypothesis of stable preferences. Previous applications have tested for the presence of structural change using this approach. This paper shows how to include demand shifters such as advertising in the analysis. It is shown that the implied results for changes in tastes depend on restrictions on advertising's effects.Marketing,
Dynamic analysis of a three-foil rotor support system in zero gravity environment
Dynamic analysis of three foil rotor support system in zero gravity environmen
On fluid inertia effects in infinitely wide foil bearings
Fluid inertia effects in foil bearings - mathematical analysi
The Birth-Death-Mutation process: a new paradigm for fat tailed distributions
Fat tailed statistics and power-laws are ubiquitous in many complex systems.
Usually the appearance of of a few anomalously successful individuals
(bio-species, investors, websites) is interpreted as reflecting some inherent
"quality" (fitness, talent, giftedness) as in Darwin's theory of natural
selection. Here we adopt the opposite, "neutral", outlook, suggesting that the
main factor explaining success is merely luck. The statistics emerging from the
neutral birth-death-mutation (BDM) process is shown to fit marvelously many
empirical distributions. While previous neutral theories have focused on the
power-law tail, our theory economically and accurately explains the entire
distribution. We thus suggest the BDM distribution as a standard neutral model:
effects of fitness and selection are to be identified by substantial deviations
from it
Correlated Phenotypic Transitions to Competence in Bacterial Colonies
Genetic competence is a phenotypic state of a bacterial cell in which it is
capable of importing DNA, presumably to hasten its exploration of alternate
genes in its quest for survival under stress. Recently, it was proposed that
this transition is uncorrelated among different cells in the colony. Motivated
by several discovered signaling mechanisms which create colony-level responses,
we present a model for the influence of quorum-sensing signals on a colony of
B. Subtilis cells during the transition to genetic competence. Coupling to the
external signal creates an effective inhibitory mechanism, which results in
anti-correlation between the cycles of adjacent cells. We show that this
scenario is consistent with the specific experimental measurement, which fails
to detect some underlying collective signaling mechanisms. Rather, we suggest
other parameters that should be used to verify the role of a quorum-sensing
signal. We also study the conditions under which phenotypic spatial patterns
may emerge
Entanglement and Dynamic Stability of Nash Equilibria in a Symmetric Quantum Game
We study the evolutionary stability of Nash equilibria (NE) in a symmetric
quantum game played by the recently proposed scheme of applying `identity' and
`Pauli spin flip' operators on the initial state with classical probabilities.
We show that in this symmetric game dynamic stability of a NE can be changed
when the game changes its form, for example, from classical to quantum. It
happens even when the NE remains intact in both forms.Comment: Latex,no figure,submitted to Physics Letters
Comparing NMR and X-ray protein structure: Lindemann-like parameters and NMR disorder
Disordered protein chains and segments are fast becoming a major pathway for our understanding of biological function, especially in more evolved species. However, the standard definition of disordered residues: the inability to constrain them in X-ray derived structures, is not easily applied to NMR derived structures. We carry out a statistical comparison between proteins whose structure was resolved using NMR and using X-ray protocols. We start by establishing a connection between these two protocols for obtaining protein structure. We find a close statistical correspondence between NMR and X-ray structures if fluctuations inherent to the NMR protocol are taken into account. Intuitively this tends to lend support to the validity of both NMR and X-ray protocols in deriving biomolecular models that correspond to in vivo conditions. We then establish Lindemann-like parameters for NMR derived structures and examine what order/disorder cutoffs for these parameters are most consistent with X-ray data and how consistent are they. Finally, we find critical value of for the best correspondence between X-ray and NMR derived order/disorder assignment, judged by maximizing the Matthews correlation, and a critical value if a balance between false positive and false negative prediction is sought. We examine a few non-conforming cases, and examine the origin of the structure derived in X-ray. This study could help in assigning meaningful disorder from NMR experiments
Random Topologies and the emergence of cooperation: the role of short-cuts
We study in detail the role of short-cuts in promoting the emergence of
cooperation in a network of agents playing the Prisoner's Dilemma Game (PDG).
We introduce a model whose topology interpolates between the one-dimensional
euclidean lattice (a ring) and the complete graph by changing the value of one
parameter (the probability p to add a link between two nodes not already
connected in the euclidean configuration). We show that there is a region of
values of p in which cooperation is largely enhanced, whilst for smaller values
of p only a few cooperators are present in the final state, and for p
\rightarrow 1- cooperation is totally suppressed. We present analytical
arguments that provide a very plausible interpretation of the simulation
results, thus unveiling the mechanism by which short-cuts contribute to promote
(or suppress) cooperation
- …