385 research outputs found

    The impact of science on metaphysics and its limits

    Get PDF
    The paper argues for three theses: (1) Metaphysics depends on science as a source of knowledge. Our current scientific theories commit us to certain metaphysical claims. (2) As far as science is concerned, it is sufficient to spell these claims out in such a way that they amount to a parsimonious ontology. That ontology, however, creates a gap between our experience and the scientific view of the world. (3) In order to avoid that gap and to achieve a complete and coherent view of the world including ourselves, we have to enrich that ontology at its foundations, thus making it less parsimonious. The criterion of the integration into a complete and coherent view of the world including ourselves is the way in which the interpretation of scientific theories depends on metaphysics. These three theses are argued for and illustrated by means of two examples from the philosophy of time (eternalism vs. presentism) and the philosophy of mind (mental causation)

    Bell's theorem and the issue of determinism and indeterminism

    Get PDF
    The paper considers the claim that quantum theories with a deterministic dynamics of objects in ordinary space-time, such as Bohmian mechanics, contradict the assumption that the measurement settings can be freely chosen in the EPR experiment. That assumption is one of the premises of Bell's theorem. I first argue that only a premise to the effect that what determines the choice of the measurement settings is independent of what determines the past state of the measured system is needed for the derivation of Bell's theorem. Determinism as such does not undermine that independence (unless there are particular initial conditions of the universe that would amount to conspiracy). Only entanglement could do so. However, generic entanglement without collapse on the level of the universal wave function can go together with effective wave functions for subsystems of the universe, as in Bohmian mechanics. The paper argues that such effective wave functions are sufficient for the mentioned independence premise to hold

    Metaphysics of science between metaphysics and science

    Get PDF
    The paper argues that metaphysics depends upon science when it comes to claims about the constitution of the real world. That thesis is illustrated by considering the examples of global supervenience, the tenseless vs. the tensed theory of time and existence, events vs. substances, and relations vs. intrinsic properties. An argument is sketched out for a metaphysics of a four-dimensional block universe whose content are events and their sequences, events consisting in physical properties instantiated at space-time points, these properties being relations rather than intrinsic properties

    The primitive ontology of quantum physics: guidelines for an assessment of the proposals

    Get PDF
    The paper seeks to make progress from stating primitive ontology theories of quantum physics, notably Bohmian mechanics, the GRW matter density theory and the GRW flash theory, to assessing these theories. Four criteria are set out: (a) internal coherence; (b) empirical adequacy; (c) relationship to other theories; (d) explanatory value. The paper argues that the stock objections against these theories do not withstand scrutiny. Its focus then is on their explanatory value: they pursue different strategies to ground the textbook formalism of quantum mechanics, and they develop different explanations of quantum non-locality. In conclusion, it is argued that Bohmian mechanics offers a better prospect for making quantum non-locality intelligible than the GRW matter density theory and the GRW flash theory

    How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics

    Get PDF
    The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories of quantum physics, one can accomplish that task. In particular, Bohmian mechanics offers the best prospect for doing so. (2) In general, the paper seeks to bring OSR and the primitive ontology theories of quantum physics together: on the one hand, in order to be applicable to quantum mechanics, OSR has to consider what the quantum ontology of matter distributed in space-time is. On the other hand, as regards the primitive ontology theories, OSR provides the conceptual tools for these theories to answer the question of what the ontological status of the wave-function is.Comment: arXiv admin note: substantial text overlap with arXiv:1406.073

    Individuality and the account of non-locality: the case for the particle ontology in quantum physics

    Get PDF
    The paper explains why an ontology of permanent point particles that are individuated by their relative positions and that move on continuous trajectories as given by a deterministic law of motion constitutes the best solution to the measurement problem in both quantum mechanics and quantum field theory. This case is made by comparing the Bohmian theory to collapse theories such as the GRW matter density and the GRW flash theory. It is argued that the Bohmian theory makes the minimal changes, concerning only the dynamics and neither the ontology nor the account of probabilities, that are necessary to get from classical mechanics to quantum physics. There is no cogent reason to go beyond these minimal changes

    Primitive ontology and quantum state in the GRW matter density theory

    Get PDF
    The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.Comment: arXiv admin note: text overlap with arXiv:quant-ph/0603027 by other author

    Ontic structural realism and the interpretation of quantum mechanics

    Get PDF
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. This claim is illustrated by examining how OSR fares with respect to the three main candidates for an ontology of quantum mechanics, namely many worlds-type interpretations, collapse-type interpretations and hidden variable-type interpretations. The result is that OSR as such is not sufficient to answer the question of what the world is like if quantum mechanics is correc

    Why determinism in physics has no implications for free will

    Get PDF
    This paper argues for the following three theses: (1) There is a clear reason to prefer physical theories with deterministic dynamical equations: such theories are maximally rich in information and usually also maximally simple. (2) There is a clear way how to introduce probabilities in a deterministic physical theory, namely as answer to the question of what evolution of a specific system we can reasonably expect under ignorance of its exact initial conditions. This procedure works in the same manner for both classical and quantum physics. (3) There is no cogent reason to take the parameters that enter into the (deterministic) dynamical equations of physics to refer to properties of the physical systems. Granting an ontological status to parameters such as mass, charge, wave functions and the like does not lead to a gain in explanation, but only to artificial problems. Against this background, I argue that there is no conflict between determinism in physics and free will (on whatever conception of free will), and, in general, point out the limits of science when it comes to the central metaphysical issues

    A proposal for a minimalist ontology

    Get PDF
    This paper seeks to answer the following question: What is a minimal set of entities that form an ontology of the natural world, given our well-established physical theories? The proposal is that the following two axioms are sufficient to obtain such a minimalist ontology: (1) There are distance relations that individuate simple objects, namely matter points. (2) The matter points are permanent, with the distances between them changing. I sketch out how one can obtain our well-established physical theories on the basis of just these two axioms. The argument for minimalism in ontology then is that it yields all the explanations that one can reasonably demand in science and philosophy, while avoiding the drawbacks that come with a richer ontology
    • 

    corecore