7 research outputs found

    Influence of the liquid helium meniscus on neutron reflectometry data

    Get PDF
    Neutron reflectometry offers a unique opportunity for the direct observation of nano-stratification in 3He-4He mixtures in the ultra-low temperature limit. Unfortunately the results of recent experiments could not be well-modelled on account of a seemingly anomalous variation of reflectivity with momentum transfer. We now hypothesize that this effect is attributable to an optical distortion caused by the liquid’s meniscus near the container wall. The validity of this idea is tested and confirmed through a subsidiary experiment on a D2O sample, showing that the meniscus can significantly distort results if the beam size in the horizontal plane is comparable with, or bigger than, the diameter of the container. The meniscus problem can be eliminated if the beam size is substantially smaller than the diameter of the container, such that reflection takes place only from the flat region of the liquid surface thus excluding the meniscus tails. Practical measures for minimising the meniscus distortion effect are discussed

    Neutron reflection from the surface of a liquid 4He-3He mixture

    Get PDF
    We have used neutron reflection from the liquid surface at ultra-low temperatures to study the surface properties of liquid helium. We measured neutron scattering from the free surfaces of commercially pure 4He (0.3 ppm of 3He impurities) and of a 3He-4He mixture with a 3He concentration of 0.5% for temperatures in the range from 340mK to 2.2K We compare the reflected neutron intensity for different temperatures and we fit a model that describes the collected data. The data are described well by a diffusive 3He layer of a few hundred Angstrom thickness on the bulk 4He liquid surface. Even at high temperatures (∼2K) there is an increased concentration of 3He atoms near the liquid surface. The distribution does not change very much with temperature. At low temperatures the neutron absorption increases significantly, which might be an indication of the formation of Andreev states. However, the shapes of the curves do not change very much which seems to suggest that the layer formed by the 3He atoms in Andreev states is very thin ∼ 10Å. The experimental method, based on neutron reflectometry, opens up new opportunities for the study of the surfaces and interfaces of quantum fluids and solids

    Petroleum. Miscellaneous

    Full text link
    corecore