5 research outputs found

    SMILE: A joint ESA/CAS mission to investigate the interaction between the solar wind and Earth's magnetosphere

    Get PDF
    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a collaborative science mission between ESA and the Chinese Academy of Sciences (CAS). SMILE is a novel self-standing mission to observe the coupling of the solar wind and Earth's magnetosphere via X-Ray imaging of the solar wind -- magnetosphere interaction zones, UV imaging of global auroral distributions and simultaneous in-situ solar wind, magnetosheath plasma and magnetic field measurements. The SMILE mission proposal was submitted by a consortium of European, Chinese and Canadian scientists following a joint call for mission by ESA and CAS. It was formally selected by ESA's Science Programme Committee (SPC) as an element of the ESA Science Program in November 2015, with the goal of a launch at the end of 2021. In order to achieve its scientific objectives, the SMILE payload will comprise four instruments: the Soft X-ray Imager (SXI), which will spectrally map the Earth's magnetopause, magnetosheath and magnetospheric cusps; the UltraViolet Imager (UVI), dedicated to imaging the auroral regions; the Light Ion Analyser (LIA) and the MAGnetometer (MAG), which will establish the solar wind properties simultaneously with the imaging instruments. We report on the status of the mission and payload developments and the findings of a design study carried out in parallel at the concurrent design facilities (CDF) of ESA and CAS in October/November 2015. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Soft X‐ray and ENA Imaging of the Earth’s Dayside Magnetosphere

    Get PDF
    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather

    Soft X‐ray and ENA Imaging of the Earth's Dayside Magnetosphere

    No full text
    The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather
    corecore