4 research outputs found

    Structure prediction of (BaO)n nanoclusters for n⩽24 using an evolutionary algorithm

    Get PDF
    Knowing the structure of nanoclusters is relevant to gaining insight into their properties for materials design. Computational studies predicting their structure should aim to reproduce experimental results. Here, barium oxide was chosen for its suitability for both computational structure prediction and experimental structure determination. An evolutionary algorithm implemented within the KLMC structure prediction package was employed to find the thermodynamically most stable structures of barium oxide nanoclusters (BaO)n with n=4-18and24. Evolutionary algorithm runs were performed to locate local minima on the potential energy landscape defined using interatomic potentials, the structures of which were then refined using density functional theory. BaO clusters show greater preference than MgO for adopting cuts from its bulk phase, thus more closely resemble clusters of KF. (BaO)4, (BaO)6, (BaO)8, (BaO)10 and (BaO)16 should be magic number clusters and each are at least 0.03 eV/BaO more stable than all other PBEsol local minima clusters found for the same size

    Synthesis target structures for alkaline earth oxide clusters

    Get PDF
    Knowing the possible structures of individual clusters in nanostructured materials is an important first step in their design. With previous structure prediction data for BaO nanoclusters as a basis, data mining techniques were used to investigate candidate structures for magnesium oxide, calcium oxide and strontium oxide clusters. The lowest-energy structures and analysis of some of their structural properties are presented here. Clusters that are predicted to be ideal targets for synthesis, based on being both the only thermally accessible minimum for their size, and a size that is thermally accessible with respect to neighbouring sizes, include global minima for: sizes n = 9, 15, 16, 18 and 24 for (MgO)n; sizes n = 8, 9, 12, 16, 18 and 24 for (CaO) n ; the greatest number of sizes of (SrO) n clusters (n = 8, 9, 10, 12, 13, 15, 16, 18 and 24); and for (BaO) n sizes of n = 8, 10 and 16

    Approaching Bulk from the Nanoscale: Extrapolation of Binding Energy from Rock-Salt Cuts of Alkaline Earth Metal Oxides

    Get PDF
    A systematic DFT study is performed on (MgO)_{B}, (CaO)_{n}, (SrO)_{n}, and (BaO)_{n} clusters with 6 < n < 50, and which display a cuboid 2X2X2 atomic motif seen in the bulk, rock-salt, configuration. The stability and energy progression of these clusters are used to predict the energies of infinitely long nanorods, or nanowires, slabs, and the bulk global minimum energy

    Thermodynamically accessible titanium clusters TiN, N = 2-32

    Get PDF
    We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2-32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange-correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank-Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster
    corecore