6,145 research outputs found

    An Unfinished Canvas: Allocating Funding and Instructional Time for Elementary Arts Education

    Get PDF
    An Unfinished Canvas found that California's elementary schools face unique challenges inproviding all students with sequential, standards-based arts education. In particular, elementary principals identified inadequate funding and insufficient instructional time as significant barriers to the provision of arts education. For this study, we sought to further understand the impact of funding and time on elementary arts education. To do so, we examined the allocation of funding and instructional time in 10 schools across five states (Kentucky, Massachusetts, Minnesota, New Jersey, and California)

    Refining Chandra/ACIS Subpixel Event Repositioning Using a Backside Illuminated CCD Model

    Get PDF
    Subpixel event repositioning (SER) techniques have been demonstrated to significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. ACIS SER models proposed thus far are restricted to corner split (3- and 4-pixel) events, and assume that such events take place at the split pixel corners. To improve the event counting statistics, we modified the ACIS SER algorithms to include 2-pixel split events and single pixel events, using refined estimates for photon impact locations. Furthermore, simulations that make use of a high-fidelity backside illuminated (BI) CCD model demonstrate that mean photon impact positions for split events are energy dependent leading to further modification of subpixel event locations according to event type and energy, for BI ACIS devices. Testing on Chandra CCD X-ray observations of the Orion Nebula Cluster indicates that these modified SER algorithms further improve the spatial resolution of Chandra/ACIS, to the extent that the spreading in the spatial distribution of photons is dominated by the High Resolution Mirror Assembly, rather than by ACIS pixelization.Comment: 23 pages, 8 figures, 2nd version, submitted to Ap

    How the Choice of Force-Field Affects the Stability and Self-Assembly Process of Supramolecular CTA Fibers

    Get PDF
    [Image: see text] In recent years, computational methods have become an essential element of studies focusing on the self-assembly process. Although they provide unique insights, they face challenges, from which two are the most often mentioned in the literature: the temporal and spatial scale of the self-assembly. A less often mentioned issue, but not less important, is the choice of the force-field. The repetitive nature of the supramolecular structure results in many similar interactions. Consequently, even a small deviation in these interactions can lead to significant energy differences in the whole structure. However, studies comparing different force-fields for self-assembling systems are scarce. In this article, we compare molecular dynamics simulations for trifold hydrogen-bonded fibers performed with different force-fields, namely GROMOS, CHARMM General Force Field (CGenFF), CHARMM Drude, General Amber Force-Field (GAFF), Martini, and polarized Martini. Briefly, we tested the force-fields by simulating: (i) spontaneous self-assembly (none form a fiber within 500 ns), (ii) stability of the fiber (observed for CHARMM Drude, GAFF, MartiniP), (iii) dimerization (observed for GROMOS, GAFF, and MartiniP), and (iv) oligomerization (observed for CHARMM Drude and MartiniP). This system shows that knowledge of the force-field behavior regarding interactions in oligomer and larger self-assembled structures is crucial for designing efficient simulation protocols for self-assembling systems

    Theory of Diluted Magnetic Semiconductor Ferromagnetism

    Full text link
    We present a theory of carrier-induced ferromagnetism in diluted magnetic semiconductors (III_{1-x} Mn_x V) which allows for arbitrary itinerant-carrier spin polarization and dynamic correlations. Both ingredients are essential in identifying the system's elementary excitations and describing their properties. We find a branch of collective modes, in addition to the spin waves and Stoner continuum which occur in metallic ferromagnets, and predict that the low-temperature spin stiffness is independent of the strength of the exchange coupling between magnetic ions and itinerant carriers. We discuss the temperature dependence of the magnetization and the heat capacity

    Hole spin polarization in GaAlAs:Mn structures

    Full text link
    A self-consistent calculation of the electronic properties of GaAlAs:Mn magnetic semiconductor quantum well structures is performed including the Hartree term and the sp-d exchange interaction with the Mn magnetic moments. The spin polarization density is obtained for several structure configurations. Available experimental results are compared with theory.Comment: 4 page

    Transition temperature of ferromagnetic semiconductors: a dynamical mean field study

    Full text link
    We formulate a theory of doped magnetic semiconductors such as Ga1−x_{1-x}Mnx_xAs which have attracted recent attention for their possible use in spintronic applications. We solve the theory in the dynamical mean field approximation to find the magnetic transition temperature TcT_c as a function of magnetic coupling strength JJ and carrier density nn. We find that TcT_c is determined by a subtle interplay between carrier density and magnetic coupling.Comment: 4 pages, 4 figure
    • …
    corecore