572 research outputs found

    Perturbative approach to the nonlinear saturation of the tearing mode for any current gradient

    Full text link
    Within the traditional frame of reduced MHD, a new rigorous perturbation expansion provides the equation ruling the nonlinear growth and saturation of the tearing mode for any current gradient. The small parameter is the magnetic island width w. For the first time, the final equation displays at once terms of order w ln(1/w) and w which have the same magnitude for practical purposes; two new O(w) terms involve the current gradient. The technique is applicable to the case of an external forcing. The solution for a static forcing is computed explicitly and it exhibits three physical regimes.Comment: 4 pages, submitted to Physical Review Letter

    Vlasov equation and NN-body dynamics - How central is particle dynamics to our understanding of plasmas?

    Full text link
    Difficulties in founding microscopically the Vlasov equation for Coulomb-interacting particles are recalled for both the statistical approach (BBGKY hierarchy and Liouville equation on phase space) and the dynamical approach (single empirical measure on one-particle (r,v)(\mathbf{r},\mathbf{v})-space). The role of particle trajectories (characteristics) in the analysis of the partial differential Vlasov--Poisson system is stressed. Starting from many-body dynamics, a direct derivation of both Debye shielding and collective behaviour is sketched.Comment: revTeX, 15 p

    N-body description of Debye shielding and Landau damping

    Full text link
    This paper brings further insight into the recently published N-body description of Debye shielding and Landau damping [Escande D F, Elskens Y and Doveil F 2014 Plasma Phys. Control. Fusion 57 025017]. Its fundamental equation for the electrostatic potential is derived in a simpler and more rigorous way. Various physical consequences of the new approach are discussed, and this approach is compared with the seminal one by Pines and Bohm [Pines D and Bohm D 1952 Phys. Rev. 85 338--353].Comment: invited talk to 42nd EPS conference on plasma physics (Lisbon, 2015), submitted to Plasma Physics and Controlled Fusio

    Calculation of transport coefficient profiles in modulation experiments as an inverse problem

    Full text link
    The calculation of transport profiles from experimental measurements belongs in the category of inverse problems which are known to come with issues of ill-conditioning or singularity. A reformulation of the calculation, the matricial approach, is proposed for periodically modulated experiments, within the context of the standard advection-diffusion model where these issues are related to the vanishing of the determinant of a 2x2 matrix. This sheds light on the accuracy of calculations with transport codes, and provides a path for a more precise assessment of the profiles and of the related uncertainty.Comment: V2: two typos correcte

    Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction

    Full text link
    The derivation of Debye shielding and Landau damping from the NN-body description of plasmas is performed directly by using Newton's second law for the NN-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.Comment: arXiv admin note: substantial text overlap with arXiv:1310.3096, arXiv:1210.154

    When can Fokker-Planck Equation describe anomalous or chaotic transport?

    Full text link
    The Fokker-Planck Equation, applied to transport processes in fusion plasmas, can model several anomalous features, including uphill transport, scaling of confinement time with system size, and convective propagation of externally induced perturbations. It can be justified for generic particle transport provided that there is enough randomness in the Hamiltonian describing the dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients are largely independent. Depending on the statistics of interest, the same dynamical system may be found diffusive or dominated by its L\'{e}vy flights.Comment: 4 pages. Accepted in Physical Review Letters. V2: only some minor change
    • …
    corecore