5 research outputs found

    Economic and Technical Evaluation of Flexible Power GenerationScenarios for a Biogas Plant

    Get PDF
    Biogas plants can contribute significantly to the integration of renewable energy sources in the energy system due to their flexible operability. The storability of the energy carrier enables them to generate power in a demand-oriented way and to participate in electricity markets that focus on balancing power supply and demand. In this study process simulation was used to investigate the economic and technical effects of flexible power generation on an Austrian biogas plant that focuses on biomethane production. Three different power generation scenarios were evaluated considering participation in the electricity spot market and markets for control energy reserves, while continuously producing biomethane. The results show that no major technical adaptions are needed for flexible power generation but an appropriate support scheme (premium system) is required to make demand-oriented power generation economically viable. The determined required premium was 37.3-99.9 EUR/MWh depending on the power generation scenario

    Economic and Global Warming Potential Assessment of Flexible Power Generation with Biogas Plants

    No full text
    Demand-oriented power generation by power plants is becoming increasingly important due to the rising share of intermittent power sources in the energy system. Biogas plants can contribute to electricity grid stability through flexible power generation. This work involved conducting an economic and global warming potential (GWP) assessment of power generation with biogas plants that focused on the Austrian biogas sector. Twelve biogas plant configurations with electric rated outputs ranging from 150–750 kW and different input material compositions were investigated. The results from the economic assessment reveal that the required additional payment (premium) to make power generation economically viable ranges from 158.1–217.3 € MWh−1. Further, the GWP of biogas plant setups was analyzed using life cycle assessment. The results range from −0.42 to 0.06 t CO2 eq. MWh−1 and show that the 150 kW plant configurations yield the best outcome regarding GWP. Electricity from biogas in all scenarios outperformed the compared conventional electricity sources within the GWP. Greenhouse gas (GHG) mitigation costs were calculated by relating the needed premium to the CO2 eq. saving potential and range from 149.5–674.1 € (t CO2 eq.)−1

    Techno-economic assessment of providing control energy reserves with a biogas plant

    No full text
    Austrian Research Promotion Agency (FFG) Bio(FLEX)Ne

    Economic and Global Warming Potential Assessment of Flexible Power Generation with Biogas Plants

    No full text
    Demand-oriented power generation by power plants is becoming increasingly important due to the rising share of intermittent power sources in the energy system. Biogas plants can contribute to electricity grid stability through flexible power generation. This work involved conducting an economic and global warming potential (GWP) assessment of power generation with biogas plants that focused on the Austrian biogas sector. Twelve biogas plant configurations with electric rated outputs ranging from 150−750 kW and different input material compositions were investigated. The results from the economic assessment reveal that the required additional payment (premium) to make power generation economically viable ranges from 158.1−217.3 € MWh−1. Further, the GWP of biogas plant setups was analyzed using life cycle assessment. The results range from −0.42 to 0.06 t CO2 eq. MWh−1 and show that the 150 kW plant configurations yield the best outcome regarding GWP. Electricity from biogas in all scenarios outperformed the compared conventional electricity sources within the GWP. Greenhouse gas (GHG) mitigation costs were calculated by relating the needed premium to the CO2 eq. saving potential and range from 149.5−674.1 € (t CO2 eq.)−1
    corecore