6 research outputs found
Recommended from our members
Experimental characterization of spin motor nozzle flow.
The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation
Recommended from our members
Surface Measurements of a Supersonic Jet in Subsonic Compressible Crossflow for the Validation of Computational Models
Despite many decades of jet-in-crossflow experimentation, a distinct lack of data remains for a supersonic jet exhausting into a subsonic compressible crossflow. The present investigation seeks to address this deficiency by examining the flowfield structure of a Mach 3.73 jet injected transversely from a flat plate into a subsonic compressible freestream. The experimental results described herein include the mean surface pressure field as mapped using static pressure taps on the flat plate and an identification of flow features by employing an oil-based surface flow tracer. The possibility of flow separation within the nozzle itself also is addressed using pressure taps along the nozzle interior wall, as is the asymmetry of the separation line due to the variation of the local backpressure around the perimeter of the nozzle orifice resulting from the jet-in-crossflow interaction. Pressure data both on the flat plate and within the nozzle are presented at numerous angles with respect to the crossflow freestream direction to provide a breadth of measurements throughout the interaction region. Since the data are intended for use in validating computational models, attention is paid to providing details regarding the experimental geometry, boundary conditions, flowfield nonuniformities, and uncertainty analyses. Eight different sets of data are provided, covering a range of values of the jet-to-freestream dynamic pressure ratio from 2.8 to 16.9 and a freestream Mach number range of 0.5 to 0.8
Recommended from our members
Innovative Measurement Diagnostics for Analysis of Jet Interactions in Rotating Flowfields
The present document summarizes the experimental efforts of a three-year study funded under the Laboratory Directed Research and Development program of Sandia National Laboratories. The Innovative Diagnostics LDRD project was designed to develop new measurement capabilities to examine the interaction of a propulsive spin jet in a transonic freestream for a model in a wind tunnel. The project motivation was the type of jet/fin interactions commonly occurring during deployment of weapon systems. In particular, the two phenomena of interest were the interaction of the propulsive spin jet with the freestream in the vicinity of the nozzle and the impact of the spin rocket plume and its vortices on the downstream fins. The main thrust of the technical developments was to incorporate small-size, Lagrangian sensors for pressure and roll-rate on a scale model and include data acquisition, transmission, and power circuitry onboard. FY01 was the final year of the three-year LDRD project and the team accomplished much of the project goals including use of micron-scale pressure sensors, an onboard telemetry system for data acquisition and transfer, onboard jet exhaust, and roll-rate measurements. A new wind tunnel model was designed, fabricated, and tested for the program which incorporated the ability to house multiple MEMS-based pressure sensors, interchangeable vehicle fins with pressure instrumentation, an onboard multiple-channel telemetry data package, and a high-pressure jet exhaust simulating a spin rocket motor plume. Experiments were conducted for a variety of MEMS-based pressure sensors to determine performance and sensitivity in order to select pressure transducers for use. The data acquisition and analysis path was most successful by using multiple, 16-channel data processors with telemetry capability to a receiver outside the wind tunnel. The development of the various instrumentation paths led to the fabrication and installation of a new wind tunnel model for baseline non-rotating experiments to validate the durability of the technologies and techniques. The program successfully investigated a wide variety of instrumentation and experimental techniques and ended with basic experiments for a non-rotating model with jet-on with the onboard jets operating and both rotating and non-rotating model conditions