93 research outputs found
Editorial: Highlights in environmental psychology: pro-environmental purchase intent
Pro-environmental purchase is a topic of rising importance worldwide because it contributes to making consumption patterns more responsible (De Canio et al., 2021). Pro-environmental behavior can be defined as “behavior that harms the environment as little as possible, or even benefits the environment” (Steg and Vlek, 2009, p. 309; Ertz et al., 2016, p. 3971). Consequently, pro-environmental purchase (PEP) must be understood as a specific form of buying that harms the natural environment as little as possible and even benefits it. Products and services falling under that category are also called “green” and include, among others, energy-efficient household appliances (Nguyen et al., 2016;
Teoh et al.), water-saving appliances (Wang and Tian), eco-tourism (Fennell, 2014), ecofriendly clothing (Wiederhold and Martinez, 2018), eco-designed products (Zeng et al., 2017), bioplastics-based products (Atiwesh et al., 2021), organic food products (Rodier et al., 2017), or products and services facilitating pro-environmental behaviors such as compost bags, for example. A key factor in this is consumers, who are a fundamental part of the overall consumption process and consumer society, and it is crucial to better investigate what drives them to pro-environmental purchases
Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria
<p>Abstract</p> <p>Background</p> <p>A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers.</p> <p>Methods</p> <p>The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries.</p> <p>Results</p> <p>After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals.</p> <p>Conclusion</p> <p>The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.</p
Phylogeny of rock-inhabiting fungi related to Dothideomycetes
The class Dothideomycetes (along with Eurotiomycetes)
includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that
tolerates surprisingly well harsh conditions prevailing on rock surfaces.
Despite their convergent morphology and physiology, RIF are phylogenetically
highly diverse in Dothideomycetes. However, the positions of main
groups of RIF in this class remain unclear due to the lack of a strong
phylogenetic framework. Moreover, connections between rock-dwelling habit and
other lifestyles found in Dothideomycetes such as plant pathogens,
saprobes and lichen-forming fungi are still unexplored. Based on multigene
phylogenetic analyses, we report that RIF belong to Capnodiales
(particularly to the family Teratosphaeriaceae s.l.),
Dothideales, Pleosporales, and Myriangiales, as
well as some uncharacterised groups with affinities to
Dothideomycetes. Moreover, one lineage consisting exclusively of RIF
proved to be closely related to Arthoniomycetes, the sister class of
Dothideomycetes. The broad phylogenetic amplitude of RIF in
Dothideomycetes suggests that total species richness in this class
remains underestimated. Composition of some RIF-rich lineages suggests that
rock surfaces are reservoirs for plant-associated fungi or saprobes, although
other data also agree with rocks as a primary substrate for ancient fungal
lineages. According to the current sampling, long distance dispersal seems to
be common for RIF. Dothideomycetes lineages comprising lichens also
include RIF, suggesting a possible link between rock-dwelling habit and
lichenisation
Outline of Fungi and fungus-like taxa
This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi
Poole revisited
SIGLEAvailable from British Library Document Supply Centre-DSC:3597.9512(no 2521) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …