2,030 research outputs found

    An Extreme-AO Search for Giant Planets around a White Dwarf --VLT/SPHERE performance on a faint target GD 50

    Full text link
    CONTEXT. Little is known about the planetary systems around single white dwarfs although there is strong evidence that they do exist. AIMS. We performed a pilot study with the extreme-AO system on the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD 50. METHODS. We were awarded science verification time on the new ESO instrument SPHERE. Observations were made with the InfraRed Dual-band Imager and Spectrograph in classical imaging mode in H band. RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO loop was closed and a strehl of 37\% was reached in H band. No objects were detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags at 0{\farcs}2, 0{\farcs}4 and 0{\farcs}6 and beyond, respectively. We exclude any substellar objects more massive than 4.0 MJ_\textrm{J} at 6.2 AU, 2.9 MJ_\textrm{J} at 12.4 AU and 2.8 MJ_\textrm{J} at 18.6 AU and beyond. This rivals the previous upper limit set by Spitzer. We further show that SPHERE is the most promising instrument available to search for close-in substellar objects around nearby white dwarfs.Comment: A&A letters, accepte

    Collisional modelling of the debris disc around HIP 17439

    Full text link
    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. A good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not supported, although not ruled out, by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of discriminating between the competing scenarios by future observations are discussed.Comment: Astronomy and Astrophysics (accepted for publication). 11 pages, 8 figure

    Interpreting the extended emission around three nearby debris disc host stars

    Full text link
    Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. The Herschel Open Time Key Programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around ∼\sim 20% of stars. Herschel's high angular resolution (∼\sim 7" FWHM at 100 μ\mum) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs' radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&

    Collisional modelling of the AU Microscopii debris disc

    Full text link
    The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. While the SED and the shape of the ALMA profile are well reproduced, the models deviate from the scattered light data more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40au than predicted by the models. The problem may be mitigated by irregularly-shaped dust grains which have scattering properties different from the Mie spheres used. From tests with a handful of selected dust materials, we derive a preference for mixtures of silicate, carbon, and ice of moderate porosity. We address the origin of the unresolved central excess emission detected by ALMA and show that it cannot stem from an additional inner belt alone. Instead, it should derive, at least partly, from the chromosphere of the central star.Comment: Astronomy and Astrophysics (accepted for publication), 18 pages, 11 figure

    The changing immune system in sepsis: Is individualized immuno-modulatory therapy the answer?

    Get PDF
    Sepsis remains the leading cause of death in most intensive care units. Advances in understanding the immune response to sepsis provide the opportunity to develop more effective therapies. The immune response in sepsis can be characterized by a cytokine-mediated hyper-inflammatory phase, which most patients survive, and a subsequent immune-suppressive phase. Patients fail to eradicate invading pathogens and are susceptible to opportunistic organisms in the hypo-inflammatory phase. Many mechanisms are responsible for sepsis-induced immuno-suppression, including apoptotic depletion of immune cells, increased T regulatory and myeloid-derived suppressor cells, and cellular exhaustion. Currently in clinical trial for sepsis are granulocyte macrophage colony stimulating factor and interferon gamma, immune-therapeutic agents that boost patient immunity. Immuno-adjuvants with promise in clinically relevant animal models of sepsis include anti-programmed cell death-1 and interleukin-7. The future of immune therapy in sepsis will necessitate identification of the immunologic phase using clinical and laboratory parameters as well as biomarkers of innate and adaptive immunity

    Rapid grain growth in post-AGB disc systems from far-infrared and sub-millimetre photometry

    Full text link
    The timescales on which astronomical dust grows remain poorly understood, with important consequences for our understanding of processes like circumstellar disk evolution and planet formation.A number of post-asymptotic giant branch stars are found to host optically thick, dust- and gas-rich circumstellar discs in Keplerian orbits. These discs exhibit evidence of dust evolution, similar to protoplanetary discs; however since post-AGB discs have substantially shorter lifetimes than protoplanetary discs they may provide new insights on the grain-growth process. We examine a sample of post-AGB stars with discs to determine the FIR and sub-mm spectral index by homogeneously fitting a sample of data from \textit{Herschel}, the SMA and the literature. We find that grain growth to at least hundreds of micrometres is ubiquitous in these systems, and that the distribution of spectral indices is more similar to that of protoplanetary discs than debris discs. No correlation is found with the mid-infrared colours of the discs, implying that grain growth occurs independently of the disc structure in post-AGB discs. We infer that grain growth to ∼\simmm sizes must occur on timescales <<105<<10^{5} yr, perhaps by orders of magnitude, as the lifetimes of these discs are expected to be ≲105\lesssim10^{5}~yr and all objects have converged to the same state. This growth timescale is short compared to the results of models for protoplanetary discs including fragmentation, and may provide new constraints on the physics of grain growth.Comment: 13 pages, 7 figures. Accepted for publication in MNRA

    The TRENDS High-Contrast Imaging Survey. VII. Discovery of a Nearby Sirius-like White Dwarf System (HD 169889)

    Get PDF
    Monitoring the long-term radial velocity (RV) and acceleration of nearby stars has proven an effective method for directly detecting binary and substellar companions. Some fraction of nearby RV trend systems are expected to be comprised of compact objects that likewise induce a systemic Doppler signal. In this paper, we report the discovery of a white dwarf companion found to orbit the nearby (π=28.297±0.066\pi = 28.297 \pm 0.066 mas) G9 V star HD 169889. High-contrast imaging observations using NIRC2 at Keck and LMIRCam at the LBT uncover the (ΔH=9.76±0.16\Delta H = 9.76 \pm 0.16, ΔL′=9.60±0.03\Delta L' = 9.60 \pm 0.03) companion at an angular separation of 0.8'' (28 au). Thirteen years of precise Doppler observations reveal a steep linear acceleration in RV time series and place a dynamical constraint on the companion mass of M≥0.369±0.010M⊙M \geq 0.369 \pm 0.010 M_{\odot}. This "Sirius-like" system adds to the census of white dwarf companions suspected to be missing in the solar neighborhood.Comment: Accepted to Ap

    Bestimmung von Hydroxylamin in Purex-Prozessloesungen

    Get PDF
    • …
    corecore