4,310 research outputs found

    Deformation of an Elastic Spherical Shell under the Pressure of Viscous Incompressible Fluid

    Get PDF
    The deformation of an elastic spherical shell under the pressure of viscous incompressible fluid is considered. Analytical formulas for calculating the components of normal and tangential deflections of the shell middle surface are obtained. A new mathematical model of an elastic spherical shell is offered on the basis of introduction of the Finite Element Method calculations. The comparison of the asymptotic and numerical results is performed

    Theory of transient spectroscopy of multiple quantum well structures

    Full text link
    A theory of the transient spectroscopy of quantum well (QW) structures under a large applied bias is presented. An analytical model of the initial part of the transient current is proposed. The time constant of the transient current depends not only on the emission rate from the QWs, as is usually assumed, but also on the subsequent carrier transport across QWs. Numerical simulation was used to confirm the validity of the proposed model, and to study the transient current on a larger time scale. It is shown that the transient current is influenced by the nonuniform distribution of the electric field and related effects, which results in a step-like behavior of the current. A procedure of extraction of the QW emission time from the transient spectroscopy experiments is suggested.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Binding energy constraint on matter radius and soft dipole excitations of C-22

    Get PDF
    An unusually large value of the C-22 matter radius has recently been extracted from measured reaction cross sections. The giant size can be explained by a very loose binding that is, however, not known experimentally yet. Within the three-body cluster model we have explored the sensitivity of the s-motion-dominated C-22 geometry to the two-neutron separation energy. A low energy of a few tens of keV is required to reach the alleged experimental lower value of the matter radius, while the experimental mean radius requires an extremely tiny binding. The dependence of the C-22 charge radius on the two-neutron separation energy is also presented. The soft dipole mode in C-22 is shown to be strongly affected by the loose binding and should be studied in the process of Coulomb fragmentation

    Detection of Giant Radio Pulses from the Pulsar PSR B0656+14

    Full text link
    Giant pulses (GPs) have been detected from the pulsar PSR B0656+14. A pulse that is more intense than the average pulse by a factor of 120 is encountered approximately once in 3000 observed periods of the pulsar. The peak flux density of the strongest pulse, 120 Jy, is a factor of 630 higher than that of the average pulse. The GP energy exceeds the energy of the average pulse by up to a factor of 110, which is comparable to that for other known pulsars with GPs, including the Crab pulsar and the millisecond pulsar PSR B1937+21. The giant pulses are a factor of 6 narrower than the average pulse and are clustered at the head of the average pulse. PSR B0656+14 along with PSR B0031-07, PSR B1112+50, and PSR J1752+2359 belong to a group of pulsars that differ from previously known ones in which GPs have been detected without any extremely strong magnetic field on the light cylinder.Comment: 10 pages, 3 figures, 1 table; originally published in Russian in Pis'ma Astron. Zh., 2006, v.32, 650; translated by George Rudnitskii; the English version will be appear in Astronomy Letter

    Modified variable phase method for the solution of coupled radial Schrodinger equations

    Get PDF
    A modified variable phase method for the numerical solution of coupled radial Schrodinger equations, which maintains linear independence for different sets of solution vectors, is suggested. The modification involves rearrangement of coupled equations to avoid the usual numerical instabilities associated with components of the wave function in their classically forbidden regions. The modified method is applied to nuclear structure calculations of halo nuclei within the hyperspherical harmonics approach

    Noiseless Collective Motion out of Noisy Chaos

    Get PDF
    We consider the effect of microscopic external noise on the collective motion of a globally coupled map in fully desynchronized states. Without the external noise a macroscopic variable shows high-dimensional chaos distinguishable from random motion. With the increase of external noise intensity, the collective motion is successively simplified. The number of effective degrees of freedom in the collective motion is found to decrease as logσ2-\log{\sigma^2} with the external noise variance σ2\sigma^2. It is shown how the microscopic noise can suppress the number of degrees of freedom at a macroscopic level.Comment: 9 pages RevTex file and 4 postscript figure

    Stable monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter Space

    Get PDF
    A continuum of new monopole and dyon solutions in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space are found. They are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. A class of monopole solutions which have no node in non-Abelian magnetic fields are shown to be stable against spherically symmetric linear perturbations.Comment: 9 pages with 5 figures. Revised version. To appear in Phys Rev Let

    Collective motions in globally coupled tent maps with stochastic updating

    Full text link
    We study a generalization of globally coupled maps, where the elements are updated with probability pp. When pp is below a threshold pcp_c, the collective motion vanishes and the system is the stationary state in the large size limit. We present the linear stability analysis.Comment: 6 pages including 5 figure
    corecore