38 research outputs found

    Design and implementation of a nonlinear pi predictive controller for a grid-tied photovoltaic inverter

    Get PDF
    This paper presents the design, implementation, and performance testing of a nonlinear proportionalintegral (PI) predictive controller for a grid-tied inverter used in photovoltaic systems. A conventional cascade structure is adopted to design the proposed controller, where the outer loop is used to regulate the dc-link voltage, and the inner loop is designed as a current controller for adjusting the active and reactive powers injected into the grid. For each loop, the controller is derived based on combining a continuous-time nonlinear model predictive control and nonlinear disturbance observer techniques. It turns out that the composite controller reduces to a nonlinear PI controller with a predictive term that plays an important role in improving tracking performance. The salient feature of the proposed approach is its ability to approximately preserve the nominal tracking performance during the startup phase. Both simulation and experimental results are provided to demonstrate the effectiveness of the proposed approach in terms of nominal performance recovery, disturbance rejection, and current control

    Direct power control for grid-connected doubly fed induction generator using disturbance observer based control

    Get PDF
    A disturbance observer based control method for a grid-connected doubly fed induction generator is presented in this study. The proposed control method consists of a state-feedback controller and a disturbance observer (DO). The DO is used to compensate for model uncertainties with the aim of removing the steady-state error. The control objective consists of regulating the stator currents instead of the rotor currents in order to achieve direct control of the stator active and reactive powers. Such a control scheme removes the need for an exact knowledge of the machine parameters to achieve accurate control of the stator active and reactive powers. The main advantage of this control method is ensuring a good transient performance as per the controller design specifications, while guaranteeing zero steady-state error. Moreover, the proposed control method was experimentally validated on a small scale DFIG setup

    Experimental Validation of a Robust Continuous Nonlinear Model Predictive Control Based Grid-Interlinked Photovoltaic Inverter

    Get PDF
    This paper presents a robust continuous nonlinear model predictive control (CNMPC) for a grid-connected photovoltaic (PV) inverter system. The objective of the proposed approach is to control the power exchange between the grid and a PV system, while achieving unity power factor operation. As the continuous nonlinear MPC cannot completely remove the steady-state error in the presence of disturbances, the nonlinear disturbance observer-based control is adopted to estimate the offset caused by parametric uncertainties and external perturbation. The stability of the closed-loop system under both nonlinear predictive control and disturbance observer is ensured by convergence of the output-tracking error to the origin. The proposed control strategy is verified using a complete laboratory-scale PV test-bed system consisting of a PV emulator, a boost converter, and a grid-tied inverter. High performance with respect to dc-link voltage tracking, grid current control, disturbance rejection, and unity power factor operation has been demonstrated

    Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    Get PDF
    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers without encompassing the parameters of the machine itself. Hence, no extra power control loop is required in the control structure to ensure smooth operation of the DFIG. The feasibility of the proposed strategy is verified by the experimental results of the grid-connected DFIG and satisfactory performances are obtained

    Continuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling

    No full text
    © The Institution of Engineering and Technology. The design and the experimental validation of a continuous-time model predictive control (CTMPC) for a permanent magnet synchronous motor (PMSM) drive with disturbance decoupling is discussed. The CTMPC approach uses Taylor series expansion to derive a closed-form solution to the problem of model predictive control even though the system behaviour is described by a non-linear model. This type of controller requires an exact knowledge of the system model to guarantee an accurate prediction of the system behaviour, while the PMSM is usually subjected to model uncertainties and external disturbances such as the load torque. Moreover, in the proposed approach, the predicted speed tracking error is directly used to determine the required voltage command without the need for a cascaded control scheme. As a result, the load torque is seen as unmatched disturbance which makes exact disturbance decoupling more challenging. To overcome such a problem, a non-linear disturbance observer is designed and combined with the CTMPC method to enhance the prediction accuracy under parameter variation and unknown load torque. The feasibility of the proposed approach is experimentally investigated, and good transient and steady-state performances are obtained

    Experimental validation of a DFIG based current harmonics mitigation technique

    No full text
    © 2017 IEEE. In this paper, a harmonic mitigation technique is introduced to the doubly fed induction generator (DFIG) based wind energy conversion system (WECS) by modifying its grid side converter (GSC) classical control. When this technique implemented, the DFIG's GSC acts like an active power filter, which compensates for current harmonics generated by a nonlinear load connected to the point of common coupling (PCC), in addition to its primary purposes which are maintaining the dc-link voltage constant and ensuring unity power factor operation with the grid. This technique is simple, easy to be integrated with the existing system, and has the ability to compensate for the current harmonics even if the generator is in brake mode. Moreover, a robust control method is applied to DFIG's rotor side converter (RSC) to verify that the proposed technique does not affect the DFIG system nominal operation. Experimental results show that the proposed DFIG technique reduces the current total harmonic distortion (THD) at PCC

    Design and implementation of a robust state-feedback control law for a grid-connected doubly fed induction generator wind turbine

    No full text
    In this paper, a robust state-feedback control law is designed for rotor side converter of doubly fed induction generator to enhance both transient and steady-state performances of grid connected variable speed wind turbine. More explicitly, a disturbance observer-based control (DOBC) is designed to compensate for the offset caused by model uncertainties and unknown external disturbances which is not considered in the DFIG modeling. Moreover, the fast dynamic response is inherited from the state-feedback control law. The composite controller consisting of the state-feedback controller and the disturbance observer allows achieving a stable and accurate control of the stator active and reactive powers. The proposed control strategy is verified by simulations and experimental testbed. Various tests are conducted to demonstrate the effectiveness of the proposed control strategy, and satisfactory results are obtained

    Two-Switch Boost Converter With Improved Voltage Gain and Degree of Freedom of Control

    No full text
    The use of renewable resources for low power generation has led to extensive research on power converters for reliable and efficient power conversion. Though conventional boost converter (CBC) remains the widely used topology, its operating range is limited due to constraints on voltage gain and degree of freedom of control (DoFoC). This paper presents a two-switch boost converter (TSBC) which improves the voltage gain and DoFoC by cascading an additional switch-diode pair to the CBC circuit. The additional switch enhances the range of voltage gain without operating CBC at high duty ratios. Additionally, TSBC offers more choices to adjust voltage gain, which enhances DoFoC. The switching interval selection is detailed considering the voltage gain and constraints on circuit variables. The design formulations of TSBC are examined to facilitate optimal choice of components. The features of TSBC are theoretically established with mathematical derivations and are validated by simulations and experiments. The experimental results indicate that for a duty ratio of 0.7 for the existing switch of CBC, an increase in voltage gain from 3.2 to 4.3 is achieved when the duty ratio of the additional switch in TSBC is varied from 0 to 0.1. Similarly, improved DoFoC is demonstrated with inductor current control as well as with constant ripple ratios while maintaining the required output voltage. The proposed converter can easily replace the commonly CBC to improve the gain and DoFoC by simply cascading a switch-diode pair at the input-side of CBC
    corecore