213 research outputs found
Tuning density profiles and mobility of inhomogeneous fluids
Density profiles are the most common measure of inhomogeneous structure in
confined fluids, but their connection to transport coefficients is poorly
understood. We explore via simulation how tuning particle-wall interactions to
flatten or enhance the particle layering of a model confined fluid impacts its
self-diffusivity, viscosity, and entropy. Interestingly, interactions that
eliminate particle layering significantly reduce confined fluid mobility,
whereas those that enhance layering can have the opposite effect. Excess
entropy helps to understand and predict these trends.Comment: 5 pages, 3 figure
Variable action potential backpropagation during tonic firing and low-threshold spike bursts in thalamocortical but not thalamic reticular nucleus neurons
Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca2-imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that “tonic”’ and low-threshold-spike (LTS) “burst” APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons
The Thalamus as a Low Pass Filter. Filtering at the Cellular Level does Not Equate with Filtering at the Network Level
In the mammalian central nervous system, most sensory information passes through primary sensory thalamic nuclei, however the consequence of this remains unclear. Various propositions exist, likening the thalamus to a gate, or a high pass filter. Here, using a simple leaky integrate and fire model based on physiological parameters, we show that the thalamus behaves akin to a low pass filter. Specifically, as individual cells in the thalamus rely on consistent drive to spike, stimuli that is rapidly and continuously changing over time such that it activates sensory cells with different receptive fields are unable to drive thalamic spiking. This means that thalamic encoding is robust to sensory noise, however it induces a lag in sensory representation. Thus, the thalamus stabilizes encoding of sensory information, at the cost of response rate
Metabotropic regulation of extrasynaptic GABA(A) receptors
In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca2+ influx and elevation of the intracellular Ca2+ concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca2+ entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca2+ influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air–liquid interphase thereby “activating” it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase
Impact of surface roughness on diffusion of confined fluids
Using event-driven molecular dynamics simulations, we quantify how the self
diffusivity of confined hard-sphere fluids depends on the nature of the
confining boundaries. We explore systems with featureless confining boundaries
that treat particle-boundary collisions in different ways and also various
types of physically (i.e., geometrically) rough boundaries. We show that, for
moderately dense fluids, the ratio of the self diffusivity of a rough wall
system to that of an appropriate smooth-wall reference system is a linear
function of the reciprocal wall separation, with the slope depending on the
nature of the roughness. We also discuss some simple practical ways to use this
information to predict confined hard-sphere fluid behavior in different
rough-wall systems
The thalamus as a low pass filter: filtering at the cellular level does not equate with filtering at the network level
In the mammalian central nervous system, most sensory information passes through primary sensory thalamic nuclei, however the consequence of this remains unclear. Various propositions exist, likening the thalamus to a gate, or a high pass filter. Here, using a simple leaky integrate and fire model based on physiological parameters, we show that the thalamus behaves akin to a low pass filter. Specifically, as individual cells in the thalamus rely on consistent drive to spike, stimuli that is rapidly and continuously changing over time such that it activates sensory cells with different receptive fields are unable to drive thalamic spiking. This means that thalamic encoding is robust to sensory noise, however it induces a lag in sensory representation. Thus, the thalamus stabilizes encoding of sensory information, at the cost of response rate
Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures
We report molecular dynamics simulation results for two-component fluid
mixtures of Gaussian-core particles, focusing on how tracer diffusivities and
static pair correlations depend on temperature, particle concentration, and
composition. At low particle concentrations, these systems behave like simple
atomic mixtures. However, for intermediate concentrations, the single-particle
dynamics of the two species largely decouple, giving rise to the following
anomalous trends. Increasing either the concentration of the fluid (at fixed
composition) or the mole fraction of the larger particles (at fixed particle
concentration) enhances the tracer diffusivity of the larger particles, but
decreases that of the smaller particles. In fact, at sufficiently high particle
concentrations, the larger particles exhibit higher mobility than the smaller
particles. Each of these dynamic behaviors is accompanied by a corresponding
structural trend that characterizes how either concentration or composition
affects the strength of the static pair correlations. Specifically, the dynamic
trends observed here are consistent with a single empirical scaling law that
relates an appropriately normalized tracer diffusivity to its pair-correlation
contribution to the excess entropy.Comment: 5 pages, 4 figure
Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles
Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport
coefficients of simple monatomic, equilibrium fluids in specific dimensionless
forms makes them approximately single-valued functions of excess entropy. This
has predictive value because, while the transport coefficients of dense fluids
are difficult to estimate from first principles, excess entropy can often be
accurately predicted from liquid-state theory. Here, we use molecular
simulations to investigate whether Rosenfeld's observation is a special case of
a more general scaling law relating mobility of particles in mixtures to excess
entropy. Specifically, we study tracer diffusivities, static structure, and
thermodynamic properties of a variety of one- and two-component model fluid
systems with either additive or non-additive interactions of the hard-sphere or
Gaussian-core form. The results of the simulations demonstrate that the effects
of mixture concentration and composition, particle-size asymmetry and
additivity, and strength of the interparticle interactions in these fluids are
consistent with an empirical scaling law relating the excess entropy to a new
dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we
introduce here. The dimensionless form of the tracer diffusivity follows from
knowledge of the intermolecular potential and the transport / thermodynamic
behavior of fluids in the dilute limit. The generalized Rosenfeld scaling
requires less information, and provides more accurate predictions, than either
Enskog theory or scalings based on the pair-correlation contribution to the
excess entropy. As we show, however, it also suffers from some limitations,
especially for systems that exhibit significant decoupling of individual
component tracer diffusivities.Comment: 15 pages, 10 figure
Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites
Thalamocortical neurons have thousands of synaptic connections from layer VI corticothalamic neurons distributed across their dendritic trees. Although corticothalamic synapses provide significant excitatory input, it remains unknown how different spatial and temporal input patterns are integrated by thalamocortical neurons. Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. We find that unitary corticothalamic inputs produce small somatic EPSPs whose amplitudes are passively normalized and virtually independent of the site of origin within the dendritic tree. Furthermore, uncaging of MNI glutamate reveals that thalamocortical neurons have postsynaptic voltage-dependent mechanisms that can amplify integrated corticothalamic input. These mechanisms, involving NMDA receptors and T-type Ca2+ channels, require temporally synchronous synaptic activation but not spatially coincident input patterns. In hyperpolarized thalamocortical neurons, T-type Ca2+ channels produce nonlinear amplification of temporally synchronous inputs, whereas asynchronous inputs are not amplified. At depolarized potentials, the input–output function for synchronous synaptic input is linear but shows enhanced gain due to activity-dependent recruitment of NMDA receptors. Computer simulations reveal that EPSP amplification by T-type Ca2+ channels and NMDA receptors occurs when synaptic inputs are either clustered onto individual dendrites or when they are distributed throughout the dendritic tree. Consequently, postsynaptic EPSP amplification mechanisms limit the “modulatory” effects of corticothalamic synaptic inputs on thalamocortical neuron membrane potential and allow these synapses to act as synchrony-dependent “drivers” of thalamocortical neuron firing. These complex thalamocortical input–output transformations significantly increase the influence of corticothalamic feedback on sensory information transfer
- …