2,481 research outputs found
Investigating the correlation between the frequency of using metacognitive reading strategies and non-routine problem solving successes in fifth grade students
The aim of this study is to examine the correlation between the frequency of using metacognitive reading strategy use and non-routine problem-solving achievements in fifth grade students. The study was conducted by using the correlational survey model, one of quantitative research methods. The participants of the study consisted of 308 fifth grade students who were studying in public schools in Istanbul and Ankara in 2017-2018 school year and were selected with convenient sampling method. The data of the study were gathered using the form for the frequency of using metacognitive reading strategy by the students and the non-routine problem solving achievement Test. In the study, the form for the frequency of using metacognitive reading strategy was applied in order to determine metacognitive reading strategies of the studies and on the following day, the achievement test including non-routine problems was then applied to the students. Simple Linear Regression Analysis and Pearson Product-Moments Correlation Analysis were used in the analysis of the data obtained in the study. According to the results of the study, there was a positive correlation between the frequency of using metacognitive reading strategy and non-routine problem-solving achievements in fifth grade students and metacognitive reading strategies were a predictor of non-routine problem-solving achievement. © 2018 by authors. All rights reserved
Systems Biology and Pangenome of Salmonella O-Antigens.
O-antigens are glycopolymers in lipopolysaccharides expressed on the cell surface of Gram-negative bacteria. Variability in the O-antigen structure constitutes the basis for the establishment of the serotyping schema. We pursued a two-pronged approach to define the basis for O-antigen structural diversity. First, we developed a bottom-up systems biology approach to O-antigen metabolism by building a reconstruction of Salmonella O-antigen biosynthesis and used it to (i) update 410 existing Salmonella strain-specific metabolic models, (ii) predict a strain's serogroup and its O-antigen glycan synthesis capability (yielding 98% agreement with experimental data), and (iii) extend our workflow to more than 1,400 Gram-negative strains. Second, we used a top-down pangenome analysis to elucidate the genetic basis for intraserogroup O-antigen structural variations. We assembled a database of O-antigen gene islands from over 11,000 sequenced Salmonella strains, revealing (i) that gene duplication, pseudogene formation, gene deletion, and bacteriophage insertion elements occur ubiquitously across serogroups; (ii) novel serotypes in the group O:4 B2 variant, as well as an additional genotype variant for group O:4, and (iii) two novel O-antigen gene islands in understudied subspecies. We thus comprehensively defined the genetic basis for O-antigen diversity.IMPORTANCE Lipopolysaccharides are a major component of the outer membrane in Gram-negative bacteria. They are composed of a conserved lipid structure that is embedded in the outer leaflet of the outer membrane and a polysaccharide known as the O-antigen. O-antigens are highly variable in structure across strains of a species and are crucial to a bacterium's interactions with its environment. They constitute the first line of defense against both the immune system and bacteriophage infections and have been shown to mediate antimicrobial resistance. The significance of our research is in identifying the metabolic and genetic differences within and across O-antigen groups in Salmonella strains. Our effort constitutes a first step toward characterizing the O-antigen metabolic network across Gram-negative organisms and a comprehensive overview of genetic variations in Salmonella
How financial markets process money information: A re-examination of evidence using band spectrum regression
Cataloged from PDF version of article.This article re-examines the response of financial markets to money supply announcements. It is argued that the previous research in the area may be suffering from an estimation bias. The potential for estimation bias stems from the questionable practice of assuming the same regression model for all frequency bands. A decomposition of the data into low-frequency and high-frequency components raises the possibility that both expected liquidity and expected inflation effects are in operation simultaneously though they affect different expectation horizons. The results also show that the distinct weight of these separate effects depends essentially on the credibility of the Fed in adhering to announced monetary targets and the state of inflationary fears
Foundational Problems of Quantum Theory: Novel Approach to Temporal Probability Density
Present study focuses on some foundational problems of quantum theory specifically deals with the concept of probability density and relating introductory problems. In this sense, the work initially investigates the origins of the general probability theory and re-examines the concepts of spatial and temporal probability densities based on genuine epistemological and ontological arguments. In order to tackle the foundational problems, standard theory is primarily memorised and criticized scientifically and philosophically in terms of foundationally disappearing term of time dependent potential energy within the time and space dependent Schrödinger wave equation. Based on those arguments, the problematic inconsistency between the spatial and temporal probability density functions is underlined. Given the problem, an original approach previously suggested, is concisely described and extended to resolve the existing problem. The novel approach, based on a novel time dependent Schrödinger wave equation, resolves the discrepancy with the classical wave equation and also leads to time dependent temporal probability densities even for the time free potential energies. Novel temporal probability density function is also normalized and has a fluctuation period of around 10-16 s which is very short compared to the atomic time scales
iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE.
Acinetobacter baumannii has become an urgent clinical threat due to the recent emergence of multi-drug resistant strains. There is thus a significant need to discover new therapeutic targets in this organism. One means for doing so is through the use of high-quality genome-scale reconstructions. Well-curated and accurate genome-scale models (GEMs) of A. baumannii would be useful for improving treatment options. We present an updated and improved genome-scale reconstruction of A. baumannii AYE, named iCN718, that improves and standardizes previous A. baumannii AYE reconstructions. iCN718 has 80% accuracy for predicting gene essentiality data and additionally can predict large-scale phenotypic data with as much as 89% accuracy, a new capability for an A. baumannii reconstruction. We further demonstrate that iCN718 can be used to analyze conserved metabolic functions in the A. baumannii core genome and to build strain-specific GEMs of 74 other A. baumannii strains from genome sequence alone. iCN718 will serve as a resource to integrate and synthesize new experimental data being generated for this urgent threat pathogen
INVESTIGATING HOW PARENTS, WHO GUIDE THEIR PRESCHOOL CHILDREN TOWARDS SPORTS, PERCEIVE SPORTS ACTIVITIES
Objectives: The aim of this study was to investigate parents’ expectations about general sport activities for their pre-school children. It is well documented that the awareness of sports knowledge of the parents are essential for the development of healthy life and acquiring a social dimension with a growth of healthy generations. Method: We administrated the ‘’Parents' Expectations of Their Children Questionnaire’’ developed by Keskin (2006). The questionnaire was a Likert type scale from ‘’totally agree’’ to ‘’totally disagree’’ and validity and reliability studies were reported by Keskin as Cronbach’s alpha was 0,86. A total of 125 participants (male; N = 39, Mage=35, 24 ± 5,48 , female; N = 86 and Mage=37,92 ± 6,65) were voluntarily participated from 10 different kinder gardens in Bursa province. The evaluation of the data was analysed with the Chi Square Test. Result: Our results revealed a statistical differences (p < .05) according to the sex groups of parents ‘’I believe my child will gain good eating habits by getting involved with sports activities’’ and age groups of parents; ‘’I believe by getting involved with sport activities, my child will stay away from psychological stress’’. Conclusion: According to parents’ belief and their expectations, attending sports activities for children provides physical, cognitive and social development for them. Developing countries (as well as developed ones) that are aware of the role of the parents on development of human being via sport and exercise activities should take into account their expectations especially in terms of sports policies. Article visualizations
SAT based Enforcement of Domotic Effects in Smart Environments
The emergence of economically viable and efficient sensor technology provided impetus to the development of smart devices (or appliances). Modern smart environments are equipped with a multitude of smart devices and sensors, aimed at delivering intelligent services to the users of smart environments. The presence of these diverse smart devices has raised a major problem of managing environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the environments using user defined goals. `Domotic Effects' is a user goal modeling framework, which provides Ambient Intelligence (AmI) designers and integrators with an abstract layer that enables the definition of generic goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. The high-level nature of domotic effects also allows the residents to program their personal space as they see fit: they can define different achievement criteria for a particular generic goal, e.g., by defining a combination of devices having some particular states, by using domain-specific custom operators. This paper describes an approach for the automatic enforcement of domotic effects in case of the Boolean application domain, suitable for intelligent monitoring and control in domotic environments. Effect enforcement is the ability to determine device configurations that can achieve a set of generic goals (domotic effects). The paper also presents an architecture to implement the enforcement of Boolean domotic effects, and results obtained from carried out experiments prove the feasibility of the proposed approach and highlight the responsiveness of the implemented effect enforcement architectur
Real-Time Hand Shape Classification
The problem of hand shape classification is challenging since a hand is
characterized by a large number of degrees of freedom. Numerous shape
descriptors have been proposed and applied over the years to estimate and
classify hand poses in reasonable time. In this paper we discuss our parallel
framework for real-time hand shape classification applicable in real-time
applications. We show how the number of gallery images influences the
classification accuracy and execution time of the parallel algorithm. We
present the speedup and efficiency analyses that prove the efficacy of the
parallel implementation. Noteworthy, different methods can be used at each step
of our parallel framework. Here, we combine the shape contexts with the
appearance-based techniques to enhance the robustness of the algorithm and to
increase the classification score. An extensive experimental study proves the
superiority of the proposed approach over existing state-of-the-art methods.Comment: 11 page
Kinematic landslide monitoring with Kalman filtering
International audienceLandslides are serious geologic disasters that threat human life and property in every country. In addition, landslides are one of the most important natural phenomena, which directly or indirectly affect countries' economy. Turkey is also the country that is under the threat of landslides. Landslides frequently occur in all of the Black Sea region as well as in many parts of Marmara, East Anatolia, and Mediterranean regions. Since these landslides resulted in destruction, they are ranked as the second important natural phenomenon that comes after earthquake in Turkey. In recent years several landslides happened after heavy rains and the resulting floods. This makes the landslide monitoring and mitigation techniques an important study subject for the related professional disciplines in Turkey. The investigations on surface deformations are conducted to define the boundaries of the landslide, size, level of activity and direction(s) of the movement, and to determine individual moving blocks of the main slide. This study focuses on the use of a kinematic deformation analysis based on Kalman Filtering at a landslide area near Istanbul. Kinematic deformation analysis has been applied in a landslide area, which is located to the north of Istanbul city. Positional data were collected using GPS technique. As part of the study, conventional static deformation analysis methodology has also been applied on the same data. The results and comparisons are discussed in this paper
- …