13,100 research outputs found
Charging axisymmetric space-times with cosmological constant
Ernst's solution generating technique for adding electromagnetic charge to
axisymmetric space-times in general relativity is generalised in presence of
the cosmological constant. Ernst equations for complex potentials are found and
they are traced back to an affective dual complex dynamical system, whose
symmetries are studied. In particular this method is able to generate charged,
asymptotically (A)dS black holes from their uncharged version: as an example,
it is shown explicitly how to pass from the Kerr-(A)dS to the Kerr-Newman-(A)dS
metric. A new solution describing a magnetic universe in presence of the
cosmological constant is also generated.Comment: 15 pages, v2: typos correcte
Switched Control of Electron Nuclear Spin Systems
In this article, we study control of electron-nuclear spin dynamics at
magnetic field strengths where the Larmor frequency of the nucleus is
comparable to the hyperfine coupling strength. The quantization axis for the
nuclear spin differs from the static B_0 field direction and depends on the
state of the electron spin. The quantization axis can be switched by flipping
the state of electron spin, allowing for universal control on nuclear spin
states. We show that by performing a sequence of flips (each followed by a
suitable delay), we can perform any desired rotation on the nuclear spins,
which can also be conditioned on the state of the electron spin. These
operations, combined with electron spin rotations can be used to synthesize any
unitary transformation on the coupled electron-nuclear spin system. We discuss
how these methods can be used for design of experiments for transfer of
polarization from the electron to the nuclear spins
Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties
This is the third in a series of papers on the construction of explicit
solutions to the stationary axisymmetric Einstein equations which can be
interpreted as counter-rotating disks of dust. We discuss the physical
properties of a class of solutions to the Einstein equations for disks with
constant angular velocity and constant relative density which was constructed
in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parameterized by two physical
parameters, the central redshift and the relative density of the two
counter-rotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods.
Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the
static limit which gives a solution of the Morgan and Morgan class and the
limit of a disk without counter-rotation. We study the mass and the angular
momentum of the spacetime. At the disk we discuss the energy-momentum tensor,
i.e. the angular velocities of the dust streams and the energy density of the
disk. The solutions have ergospheres in strongly relativistic situations. The
ultrarelativistic limit of the solution in which the central redshift diverges
is discussed in detail: In the case of two counter-rotating dust components in
the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of
the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.
Gravitating Fluxbranes
We consider the effect that gravity has when one tries to set up a constant
background form field. We find that in analogy with the Melvin solution, where
magnetic field lines self-gravitate to form a flux-tube, the self-gravity of
the form field creates fluxbranes. Several exact solutions are found
corresponding to different transverse spaces and world-volumes, a dilaton
coupling is also considered.Comment: 14 pages, 5 figure
Wave equations for the perturbations of a charged black hole
A pair of simple wave equations is presented for the symmetric gravitational
and electromagnetic perturbations of a charged black hole. One of the equations
is uncoupled, and the other has a source term given by the solution of the
first equation. The derivation is presented in full detail for either axially
symmetric or stationary perturbations, and is quite straightforward. This
result is expected to have important applications in astrophysical models.Comment: 4 page
Pair creation of black holes joined by cosmic strings
We argue that production of charged black hole pairs joined by a cosmic
string in the presence of a magnetic field can be analyzed using the Ernst
metric. The effect of the cosmic string is to pull the black holes towards each
other, opposing to the background field. An estimation of the production rate
using the Euclidean action shows that the process is suppressed as compared to
the formation of black holes without strings.Comment: 7 pages, LaTeX. Minor typos corrected
Black Hole Pair Creation and the Entropy Factor
It is shown that in the instanton approximation the rate of creation of black
holes is always enhanced by a factor of the exponential of the black hole
entropy relative to the rate of creation of compact matter distributions
(stars). This result holds for any generally covariant theory of gravitational
and matter fields that can be expressed in Hamiltonian form. It generalizes the
result obtained previously for the pair creation of magnetically charged black
holes by a magnetic field in Einstein--Maxwell theory. The particular example
of pair creation of electrically charged black holes by an electric field in
Einstein--Maxwell theory is discussed in detail.Comment: (12 pages, ReVTeX) Revised version of "Pair Creation of Electrically
Charged Black Holes". New section shows that the BH pair creation rate is
enhanced by a factor for any Hamiltonian gravity + matter
theor
Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis
We express the complex potential E and the metrical fields omega and gamma of
all stationary axisymmetric vacuum spacetimes that result from the application
of two successive quadruple-Neugebauer (or two double-Harrison) transformations
to Minkowski space in terms of data specified on the symmetry axis, which are
in turn easily expressed in terms of multipole moments. Moreover, we suggest
how, in future papers, we shall apply our approach to do the same thing for
those vacuum solutions that arise from the application of more than two
successive transformations, and for those electrovac solutions that have axis
data similar to that of the vacuum solutions of the Neugebauer family.
(References revised following response from referee.)Comment: 18 pages (REVTEX
Active Management of Low-Voltage Networks for Mitigating Overvoltages Due to Photovoltaic Units
In this paper, the overvoltage problems that might arise from the integration of photovoltaic (PV) panels into low-voltage (LV) distribution networks is addressed. A distributed scheme is proposed that adjusts the reactive and active power output of inverters to prevent or alleviate such problems. The proposed scheme is model-free and makes use of limited communication between the controllers in the form of a distress signal only during emergency conditions. It prioritizes the use of reactive power, while active power curtailment is performed only as a last resort. The behavior of the scheme is studied using dynamic simulations on a single LV feeder and on a larger network composed of 14 LV feeders. Its performance is compared with a centralized scheme based on the solution of an optimal power flow (OPF) problem, whose objective function is to minimize the active power curtailment. The proposed scheme successfully mitigates overvoltage situations due to high PV penetration and performs almost as well as the OPF-based solution with significantly less information and communication requirements
- …