804 research outputs found
Image Recognition Systems with Permutative Coding
A feature extractor and neural classifier for image recognition system are proposed. They are based on the permutative coding technique which continues our investigations on neural networks. It permits us to obtain sufficiently general description of the image to be recognized. Different types of images were used to test the proposed image recognition system. It was tested on the handwritten digit recognition problem, the face recognition problem and the shape of microobjects recognition problem. The results of testing are very promising. The error rate for the MNIST database is 0.44% and for the ORL database is 0.1%
Permutation Coding Technique for Image Recognition Systems
A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1
An Overview of Long Duration Sodium Heat Pipe Tests
High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed
Nonexistence of marginally trapped surfaces and geons in 2+1 gravity
We use existence results for Jang's equation and marginally outer trapped
surfaces (MOTSs) in 2+1 gravity to obtain nonexistence of geons in 2+1 gravity.
In particular, our results show that any 2+1 initial data set, which obeys the
dominant energy condition with cosmological constant \Lambda \geq 0 and which
satisfies a mild asymptotic condition, must have trivial topology. Moreover,
any data set obeying these conditions cannot contain a MOTS. The asymptotic
condition involves a cutoff at a finite boundary at which a null mean convexity
condition is assumed to hold; this null mean convexity condition is satisfied
by all the standard asymptotic boundary conditions. The results presented here
strengthen various aspects of previous related results in the literature. These
results not only have implications for classical 2+1 gravity but also apply to
quantum 2+1 gravity when formulated using Witten's solution space quantization.Comment: v3: Elements from the original two proofs of the main result have
been combined to give a single proof, thereby circumventing an issue with the
second proof associated with potential blow-ups of solutions to Jang's
equation. To appear in Commun. Math. Phy
Selective Adsorption and Chiral Amplification of Amino Acids in Vermiculite Clay -Implications for the origin of biochirality
Smectite clays are hydrated layer silicates that, like micas, occur naturally
in abundance. Importantly, they have readily modifiable interlayer spaces that
provide excellent sites for nanochemistry. Vermiculite is one such smectite
clay and in the presence of small chain-length alkyl-NH3Cl ions, forms
sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer
regions. These inter-layers readily adsorb organic molecules. N-propyl NH3Cl
vermiculite clay gels were used to determine the adsorption of alanine, lysine
and histidine by chiral HPLC. The results show that during reaction with fresh
vermiculite interlayers, significant chiral enrichment of either L- and
D-enantiomers occurs depending on the amino acid. Chiral enrichment of the
supernatant solutions is up to about 1% per pass. In contrast, addition to clay
interlayers already reacted with amino acid solutions resulted in little or no
change in D/L ratio during the time of the experiment. Adsorption of small
amounts of amphiphilic organic molecules in clay inter-layers is known to
produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic
simulations show that self-organization of organic species in clay interlayers
is important. These non-centrosymmetric, chirally active nanofilms may cause
clays to act subsequently as chiral amplifiers, concentrating organic material
from dilute solution and having different adsorption energetics for D- and
L-enantiomers. The additional role of clays in RNA oligimerization already
postulated by Ferris and others, together with the need for the organization of
amphiphilic molecules and lipids noted by Szostak and others, suggests that
such chiral separation by clays in lagoonal environments at normal biological
temperatures might also have played a significant role in the origin of
biochirality.Comment: 17 Pages, 2 Figures, 4 Table
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
Landscape science: a Russian geographical tradition
The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release
The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained
five-band optical-wavelength imaging near the Galactic plane outside of the
nominal survey boundaries. These additional data were obtained during
commissioning and subsequent testing of the SDSS observing system, and they
provide unique wide-area imaging data in regions of high obscuration and star
formation, including numerous young stellar objects, Herbig-Haro objects and
young star clusters. Because these data are outside the Survey regions in the
Galactic caps, they are not part of the standard SDSS data releases. This paper
presents imaging data for 832 square degrees of sky (including repeats), in the
star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are
now released to the public, with the remainder to follow at the time of SDSS
Data Release 4. The public data in Orion include the star-forming region NGC
2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in
press, see http://photo.astro.princeton.edu/oriondatarelease for data and
paper with all figure
The Fifth Data Release of the Sloan Digital Sky Survey
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky
Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and
represents the completion of the SDSS-I project (whose successor, SDSS-II will
continue through mid-2008). It includes five-band photometric data for 217
million objects selected over 8000 square degrees, and 1,048,960 spectra of
galaxies, quasars, and stars selected from 5713 square degrees of that imaging
data. These numbers represent a roughly 20% increment over those of the Fourth
Data Release; all the data from previous data releases are included in the
present release. In addition to "standard" SDSS observations, DR5 includes
repeat scans of the southern equatorial stripe, imaging scans across M31 and
the core of the Perseus cluster of galaxies, and the first spectroscopic data
from SEGUE, a survey to explore the kinematics and chemical evolution of the
Galaxy. The catalog database incorporates several new features, including
photometric redshifts of galaxies, tables of matched objects in overlap regions
of the imaging survey, and tools that allow precise computations of survey
geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS
Sixth Data Release (DR6) is now public, available from http://www.sdss.or
Current understanding of the relationship between cervical manipulation and stroke: what does it mean for the chiropractic profession?
The understanding of the relationship between cervical manipulative therapy (CMT) and vertebral artery dissection and stroke (VADS) has evolved considerably over the years. In the beginning the relationship was seen as simple cause-effect, in which CMT was seen to cause VADS in certain susceptible individuals. This was perceived as extremely rare by chiropractic physicians, but as far more common by neurologists and others. Recent evidence has clarified the relationship considerably, and suggests that the relationship is not causal, but that patients with VADS often have initial symptoms which cause them to seek care from a chiropractic physician and have a stroke some time after, independent of the chiropractic visit
- …