9 research outputs found

    Mekaanisen liikkeen mittauksia ja sovelluksia kvanttimekaanisella rajalla

    No full text
    Microscopic systems exhibit many intriguing quantum mechanical phenomena which cannot be explained by classical physics. Quantum mechanics has succesfully explained the behaviour of subatomic particles, atoms, and electromagnetic waves where entanglement, wave-particle duality and superposition of particles has been observed. In macroscopic scales, quantum mechanics explains the microscopic origin of electronic properties of solids, and quantum coherence effects are routinely observed in superfluids and superconductors. However, most macroscopic objects behave according to the laws of classical physics due to decoherence effects caused by interaction with the environment. Mechanical systems are ideal for studying quantum behavior of macroscopic objects as they can be measured with high accuracy, and their interaction with the environment can be controlled. Cavity optomechanics studies the interaction between light and mechanical objects through radiation pressure force. Recent developments in the field have made it possible to study quantum behaviour in macroscopic mechanical objects. For example, mechanical oscillators coupled to either microwave or optical light have been cooled to their quantum ground state. This thesis studies a cavity optomechanical system in which micromechanical aluminium membrane resonator is coupled to a superconducting microwave circuit resonator. This work focuses on the phenomena relating to the Heisenberg's uncertainty principle which sets a fundamental limit to the precision in which certain pairs of properties of a system can be measured. Due to uncertainty principle, even if a harmonic oscillator is cooled to the ground state, it still has random motion called the zero-point motion. This sets a fundamental limit on how accurately one can measure the motion of the resonator. In a squeezed quantum state, fluctuations of a quantity can be reduced below this quantum limit, at the cost of increased fluctuations in the pair variable. In this work, motion of a nearly macroscopic object is measured in a squeezed state. Due to uncertainty principle, a measurement amplifying an oscillatory signal always adds noise. However, when information in one part of the signal is lost, one can amplify and measure the other part perfectly. This kind of nearly noiseless phase-sensitive measurement, and squeezing of microwave fields is demonstrated in this work. An optomechanical device that simultaneously performs high-gain amplification and frequency conversion is created. Collective dynamics of a multimode optomechanical system is studied. When measuring the oscillator position continuously, the system is perturbed by the measuring. This can be avoided in quantum back-action evading measurement, which is demonstrated for collective motion of two mechanical resonators. Finally, an entanglement of centre-of-mass motion of two nearly macroscopic objects is created and stabilised.Mikroskooppisissa systeemeissÀ esiintyy monia mielenkiintoisia kvanttimekaanisia ilmiöitÀ, joita ei voida selittÀÀ klassisen fysiikan avulla. Kvanttimekaniikka selittÀÀ alkeishiukkasten, atomien ja sÀhkömagneettisten aaltojen ominaisuudet ja niiden kvanttimekaaniset ilmiöt kuten lomittumisen, aaltohiukkasdualismin ja hiukkasten superposition. Makroskooppisessa kokoluokassa kiinteiden aineiden sÀhköiset ominaisuudet selittyvÀt kvanttimekaniikan avulla, ja kvanttimekaaniseen koherenssiin liittyviÀ ilmiöitÀ havaitaan kokeellisesti supranesteissÀ ja suprajohteissa. Makroskooppiset kappaleet kuitenkin kÀyttÀytyvÀt pÀÀasiassa klassisen fysiikan mallien mukaisesti, koska ne menettÀvÀt kvanttiluonteensa vuorovaikutuksessa ympÀristön kanssa. Mekaaniset vÀrÀhtelijÀt sopivat erinomaisesti kvantti-ilmiöiden tutkimiseen makroskooppisissa kappaleissa, koska niiden liikettÀ voidaan mitata erittÀin tarkasti, ja niiden vuorovaikutusta ympÀristön kanssa voidaan kontrolloida. Optomekaniikka tutkii valon ja mekaanisten vÀrÀhtelijöiden vÀlistÀ sÀteilynpaineen vÀlittÀmÀÀ vuorovaikutusta. Viimeaikaiset saavutukset alalla ovat mahdollistaneet kvantti-ilmiöiden tutkimisen makroskooppisissa mekaanisissa vÀrÀhtelijöissÀ. Esimerkiksi mekaaninen vÀrÀhtelijÀ on pystytty jÀÀhdyttÀmÀÀn sen kvanttimekaaniseen perustilaan sekÀ mikroaaltovÀrÀhtelijÀn ettÀ optisen vÀrÀhtelijÀn avulla. TÀmÀ vÀitöskirja kÀsittelee optomekaanista systeemiÀ, jossa mikromekaaninen alumiinikalvovÀrÀhtelijÀ on kytketty suprajohtavaan mikroaaltovÀrÀhtelijÀÀn. Työ keskittyy Heisenbergin epÀmÀÀrÀisyysperiaatteen aiheuttamiin ilmiöihin. Periaate johtaa kvanttirajaan, joka rajoittaa kuinka tarkasti tietyt ominaisuusparit voidaan mitata. Harmonisella vÀrÀhtelijÀllÀ on satunnaisliikettÀ, vaikka se olisi jÀÀhdytetty perustilaan. TÀmÀn takia mekaanisen vÀrÀhtelijÀn paikkaa ei voida mitata ÀÀrettömÀn tarkasti. Puristetussa tilassa yksi ominaisuus vÀrÀhtelijÀn tilasta voidaan mitata epÀmÀÀrÀisyysperiaatteen aiheuttamaa kvanttirajaa tarkemmin toisen ominaisuuden mittaustarkkuuden kustannuksella. TÀssÀ työssÀ lÀhes makroskooppisen kappaleen vÀrÀhtely mitataan puristetussa tilassa. EpÀmÀÀrÀisyysperiaatteen takia vÀrÀhtevÀn signaalin vahvistaminen lisÀÀ mittaukseen kohinaa. TÀssÀ työssÀ toteutetaan mittausmenetelmÀ, jossa jÀttÀmÀllÀ yksi osa signaalista mittaamatta voidaan vahvistaa toinen osa ja mitata se tÀydellisesti. TyössÀ totetutetaan myös kahden portin optomekaaninen vahvistin, joka toimii samanaikaisesti taajuusmuuttajana. LisÀksi työssÀ tutkitaan kahden vÀrÀhtelijÀn yhteisvÀrÀhtelyitÀ. TyössÀ osoitetaan kuinka kahden vÀrÀhtelijÀn jatkuvan mittauksen aiheuttama takaisinkytkentÀ voidaan vÀlttÀÀ. Lopuksi kahden mekaanisen vÀrÀhtelijÀn liikkeet mitataan lomittuneessa tilassa

    Yhteisvärähtelyt usean moodin kaviteettioptomekaanisessa systeemissä

    No full text
    One of the interesting topics in physics is the study of quantum mechanical laws of nature in macroscopic systems. The potential quantum behaviour of macroscopic mechanical resonators has been studied with resonators interacting with an electromagnetic cavity mode. In this work we study a multimode system where two micromechanical drums are each coupled to a microwave on-chip cavity. This kind of system, using two micromechanical beams with nearly equal frequencies, has been previously shown to exhibit in strong coupling regime a dark mode which gets asymptotically decoupled from the cavity and has a linewidth much smaller than that of the bare cavity. The long lifetime of the dark mode could be used in the storing and retrieving of quantum information by transferring optical or microwave energy to the dark mode. Motivated by this goal, we present a novel microwave optomechanical system with two mechanical resonators with eigenfrequencies not close to each other, Omegam1/2pi = 8.11 MHz and Omegam2/2pi = 14.17 MHz and show that this system exhibits a dark mode in the strong coupling regime. Although the mechanical frequencies are intrinsically different, we show how to bring them and the cavity on-resonance and thus creating a dark mode by double sideband pumping of the cavity. The set-up allows to individually control the different mechanical modes and could be used in the studies and creation of entangled states between the different mechanical modes.Makroskooppisten kappaleiden kvanttifysikaalisien ominaisuuksien tutkiminen on eräs fysiikan mielenkiintoisimpia tutkimuskohteita. Mikromekaanisien värähteli- jöiden mahdollisia kvanttifysiikan ilmiöitä on viime aikoina tutkittu kytkemällä värähtelijä mikroaaltokavitettiin. Tässä työssä tutkimme useamman moodin op- tomekaanista systeemiä, jossa kaksi mikromekaanista rumpukalvoa on kytketty mikroaaltokaviteettiin. Vahvan kytkennän alueella tällaisen systeemin, jossa me- kaanisten värähtelyiden ominaistaajuudet ovat lähes samat, on aiemmin osoitettu muodostavan pimeän moodin, joka ei vuorovaikuta kaviteetin kanssa, ja jonka viivanleveys on paljon kaviteetin viivanleveyttä pienempi. Pimeän moodin pitkää elinaikaa voitaisiin hyödyntää kvantti-informaation tallentamisessa ja lukemisessa siirtämällä optisen tai mikroaaltosignaalin informaatio pimeään moodiin. Tässä työssä luomme uudenlaisen mikroaalto-optomekaanisen systeemin, jon- ka kahden mekaanisen värähtelijän ominaistaajuudet eivät ole lähellä toisiaan, Omegam1/2pi = 8.11 MHz and Omegam2/2pi = 14.17 MHz, ja näytämme, että tällainen sys- teemi muodostaa pimeän moodin vahvan kytkennän alueella. Vaikka mekaanisten moodien taajuudet ovat erisuuruiset, näytämme kuinka ne voidaan kytkeä ka- viteetin kanssa resonanssiin, ja luoda pimeän moodin pumppaamalla molempia mekaanisia värätelijöitä kaviteetin sivunauhapumppaamisella. Tällainen systeemi mahdollistaa mekaanisten värähtelijöiden yksittäisen kontrolloimisen ja systeemiä voitaisiin hyödyntää mekaanisten värähtelijöiden välisen lomittumisen tutkimiseen

    Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system

    No full text
    | openaire: EC/H2020/681476/EU//QOM3D | openaire: EC/H2020/732894/EU//FETPRO HOTMultimode optomechanical systems are an emerging platform for studying fundamental aspects of matter near the quantum ground state and are useful in sensitive sensing and measurement applications. We study optomechanical cooling in a system where two nearly degenerate mechanical oscillators are coupled to a single microwave cavity. Due to an optically mediated coupling the two oscillators hybridize into a bright mode with a strong optomechanical cooling rate and a dark mode nearly decoupled from the system. We find that at high coupling, sideband cooling of the dark mode is strongly suppressed. Our results are relevant to novel optomechanical systems where multiple closely spaced modes are intrinsically present.Peer reviewe

    Revealing hidden quantum correlations in an electromechanical measurement

    No full text
    Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement backaction, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the backaction is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such “ponderomotive” squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator. Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in general are not completely accessible by standard homodyne measurements. We recover these hidden correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization of hidden correlations presents a step forward in the detection of weak forces, as it allows us to fully utilize the quantum noise reduction under the conditions of strong force sensitivity.Peer reviewe

    Realization of Directional Amplification in a Microwave Optomechanical Device

    No full text
    | openaire: EC/FP7/615755/EU//CAVITYQPD | openaire: EC/H2020/732894/EU//HOTDirectional transmission or amplification of microwave signals is indispensable in various applications involving sensitive measurements. In this work we show experimentally how to use a generic cavity optomechanical setup to nonreciprocally amplify microwave signals above 3 GHz in one direction by 9 dB and simultaneously attenuate the transmission in the opposite direction by 21 dB. We use a device including two on-chip superconducting resonators and two metallic drumhead mechanical oscillators. Application of four microwave pump-tone frequencies allows the design of constructive or destructive interference for a signal tone depending on the propagation direction. The device can also be configured as an isolator with lossless nonreciprocal transmission and 18 dB of isolation.Peer reviewe

    Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device

    Get PDF
    High-gain amplifiers of electromagnetic signals operating near the quantum limit are crucial for quantum information systems and ultrasensitive quantum measurements. However, the existing techniques have a limited gain-bandwidth product and only operate with weak input signals. Here, we demonstrate a two-port optomechanical scheme for amplification and routing of microwave signals, a system that simultaneously performs high-gain amplification and frequency conversion in the quantum regime. Our amplifier, implemented in a two-cavity microwave optomechanical device, shows 41 dB of gain and has a high dynamic range, handling input signals up to 1013 photons per second, 3 orders of magnitude more than corresponding Josephson parametric amplifiers. We show that although the active medium, the mechanical resonator, is at a high temperature far from the quantum limit, only 4.6 quanta of noise is added to the input signal. Our method can be readily applied to a wide variety of optomechanical systems, including hybridoptical-microwave systems, creating a universal hub for signals at the quantum level.Peer reviewe

    Quantum Backaction Evading Measurement of Collective Mechanical Modes

    No full text
    The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.Peer reviewe
    corecore