4 research outputs found

    Development of High Temperature Oxidation Resistant Titanium Alloy Arconic-THORTM

    Get PDF
    The aeroengine and airframe applications of titanium alloys are often limited by their insufficient oxidation resistance to the aggressive environment at higher temperatures. A high temperature oxidation resistant titanium alloy (Arconic-THORTM) has been developed. This alloy is an alpha-beta alloy with superior oxidation resistance and improved creep resistance. The oxidation weight gain of Arconic-THORTM is much lower than Ti-6242 and Beta 21s in the temperature range up to 750ËšC. The room and elevated temperature properties of Arconic-THORTM are comparable to those for Ti-6242. Arconic-THORTM also shows superior, post-thermal-exposure tensile strength, ductility, and fatigue properties, and is capable of being cold formed, hot formed, and superplastic formed, welded and heat treated to different product geometries. The microstructures and mechanical properties for sheet manufactured from the production ingots are presented and discussed in this study

    Superior Oxidation Resistance Titanium Alloy ARCONIC-THOR

    No full text
    Next generation fuel-efficient jet engines are running hotter presenting a structural challenge for the exhaust systems and structures adjacent to the engines. A conventional and affordable titanium alloy with superior oxidation resistance provides significant weight reductions and associated cost savings by eliminating the need for high density material systems such as nickel-base superalloys for service temperatures in between current titanium and nickel, enabling major technology advancement in high temperature aerospace applications. This paper presents an overview of Arconic’s engineered material ARCONIC-THORTM to address the needs of future aerospace systems

    Advancement of Plasma Cold-Hearth Melting for Production of Gamma Titanium Aluminide Alloys within Arconic

    No full text
    Utilization of gamma titanium aluminide alloys in aerospace and automotive/industrial applications has placed significant demand on melting sources for products to be used in cast, wrought, and direct-machining applications. There is also an increased demand for input stock used in gas atomization of powders. Current technologies used in ingot manufacturing include plasma arc melting, vacuum arc melting, and induction skull melting + centrifugal casting. Subsequent processing may include forging, re-melting + casting, or machining directly into components. Over the past six years, Arconic Engineered Structures has developed a robust melting method using plasma cold-hearth melting technology, including the design and implementation of a new 3-torch system to produce Ti-48-2-2 cast bars. General discussions concerning plasma cold-hearth melting, manufacturing challenges, and metallurgical attributes associated with cast Ti-48-2-2 bars will be reviewed. Emphasis will be on understanding the impact of hot isostatic pressing on internal voids, residual stress cracking and resulting mechanical properties
    corecore