24 research outputs found

    ForestTreeDB: a database dedicated to the mining of tree transcriptomes

    Get PDF
    ForestTreeDB is intended as a resource that centralizes large-scale expressed sequence tag (EST) sequencing results from several tree species (). It currently encompasses 344 878 quality sequences from 68 libraries, from diverse organs of conifer and hybrid poplar trees. It utilizes the Nimbus data model to provide a hosting system for multiple projects, and uses object-relational mapping APIs in Java and Perl for data accesses within an Oracle database designed to be scalable, maintainable and extendable. Transcriptome builds or unigene sets occupy the focal point of the system. Several of the five current species-specific unigenes were used to design microarrays and SNP resources. The ForestTreeDB web application provides the means for multiple combination database queries. It presents the user with a list of discrete queries to retrieve and download large EST datasets or sequences from precompiled unigene assemblies. Functional annotation assignment is not trivial in conifers which are distantly related to angiosperm model plants. Optimal annotations are achieved through database queries that integrate results from several procedures based open-source tools. ForestTreeDB aims to facilitate sequence mining of coherent annotations in multiple species to support comparative genomic approaches. We plan to continuously enrich ForestTreeDB with other resources through collaborations with other genomic projects

    Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., <it>Saccharomyces cerevisiae </it>and <it>Drosophila melanogaster</it>), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes.</p> <p>Results</p> <p>A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes.</p> <p>Conclusion</p> <p>These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.</p

    w

    Full text link

    The Expansion of the PRAME Gene Family in Eutheria

    Get PDF
    The PRAME gene family belongs to the group of cancer/testis genes whose expression is restricted primarily to the testis and a variety of cancers. The expansion of this gene family as a result of gene duplication has been observed in primates and rodents. We analyzed the PRAME gene family in Eutheria and discovered a novel Y-linked PRAME gene family in bovine, PRAMEY, which underwent amplification after a lineage-specific, autosome-to-Y transposition. Phylogenetic analyses revealed two major evolutionary clades. Clade I containing the amplified PRAMEYs and the unamplified autosomal homologs in cattle and other eutherians is under stronger functional constraints; whereas, Clade II containing the amplified autosomal PRAMEs is under positive selection. Deep-sequencing analysis indicated that eight of the identified 16 PRAMEY loci are active transcriptionally. Compared to the bovine autosomal PRAME that is expressed predominantly in testis, the PRAMEY gene family is expressed exclusively in testis and is up-regulated during testicular maturation. Furthermore, the sense RNA of PRAMEY is expressed specifically whereas the antisense RNA is expressed predominantly in spermatids. This study revealed that the expansion of the PRAME family occurred in both autosomes and sex chromosomes in a lineage-dependent manner. Differential selection forces have shaped the evolution and function of the PRAME family. The positive selection observed on the autosomal PRAMEs (Clade II) may result in their functional diversification in immunity and reproduction. Conversely, selective constraints have operated on the expanded PRAMEYs to preserve their essential function in spermatogenesis

    ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent progress in exploring the Y-chromosome gene content in humans, mice and cats have suggested that "autosome-to-Y" transposition of the male fertility genes is a recurrent theme during the mammalian Y-chromosome evolution. These transpositions are lineage-dependent. The purpose of this study is to investigate the lineage-specific Y-chromosome genes in bovid.</p> <p>Results</p> <p>We took a direct testis cDNA selection strategy and discovered two novel gene families, <it>ZNF280BY </it>and <it>ZNF280AY</it>, on the bovine (<it>Bos taurus</it>) Y-chromosome (BTAY), which originated from the transposition of a gene block on the bovine chromosome 17 (BTA17) and subsequently amplified. Approximately 130 active <it>ZNF280BY </it>loci (and ~240 pseudogenes) and ~130 pseudogenized <it>ZNF280AY </it>copies are present over the majority of the male-specific region (MSY). Phylogenetic analysis indicated that both gene families fit with the "birth-and-death" model of evolution. The active <it>ZNF280BY </it>loci share high sequence similarity and comprise three major genomic structures, resulted from insertions/deletions (indels). Assembly of a 1.2 Mb BTAY sequence in the MSY ampliconic region demonstrated that <it>ZNF280BY </it>and <it>ZNF280AY</it>, together with <it>HSFY </it>and <it>TSPY </it>families, constitute the major elements within the repeat units. The <it>ZNF280BY </it>gene family was found to express in different developmental stages of testis with sense RNA detected in all cell types of the seminiferous tubules while the antisense RNA detected only in the spermatids. Deep sequencing of the selected cDNAs revealed that different loci of <it>ZNF280BY </it>were differentially expressed up to 60-fold. Interestingly, different copies of the <it>ZNF280AY </it>pseudogenes were also found to differentially express up to 10-fold. However, expression level of the <it>ZNF280AY </it>pseudogenes was almost 6-fold lower than that of the <it>ZNF280BY </it>genes. <it>ZNF280BY </it>and <it>ZNF280AY </it>gene families are present in bovid, but absent in other mammalian lineages.</p> <p>Conclusions</p> <p><it>ZNF280BY </it>and <it>ZNF280AY </it>are lineage-specific, multi-copy Y-gene families specific to <it>Bovidae</it>, and are derived from the transposition of an autosomal gene block. The temporal and spatial expression patterns of <it>ZNF280BY</it>s in testis suggest a role in spermatogenesis. This study offers insights into the genomic organization of the bovine MSY and gene regulation in spermatogenesis, and provides a model for studying evolution of multi-copy gene families in mammals.</p

    wCLUTO: A Web-Enabled Clustering Toolkit

    No full text
    As structural and functional genomics efforts provide the biological community with ever-broadening sets of interrelated data, the need to explore such complex information for subtle relationships expands. We present wCLUTO, a web-enabled version of the stand-alone application CLUTO, designed to apply clustering methods to genomic information. Its first application is focused on the clustering transcriptome data from microarrays. Data can be uploaded by the user into the clustering tool, a choice of several clustering methods can be made and configured, and data is presented to the user in a variety of visual formats, including a three-dimensional &quot;mountain&quot; view of the clusters. Parameters can be explored to rapidly examine a variety of clustering results, and the resulting clusters can be downloaded either for manipulation by other programs or saved in a format for publication

    Characterization of a set of novel meiotically-active promoters in <it>Arabidopsis</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homologous recombination, together with selection, laid the foundation for traditional plant breeding. The recombination process that takes place during meiotic cell division is crucial for the creation of novel variations of highly desired traits by breeders. Gaining control over this process is important for molecular breeding to achieve more precise, large-scale and quicker plant improvement. As conventional ubiquitous promoters are neither tissue-specific nor efficient in driving gene expression in meiocytes, promoters with high meiotic activities are potential candidates for manipulating the recombination process. So far, only a few meiotically-active promoters have been reported. Recently developed techniques to profile the transcriptome landscape of isolated meiocytes provided the means to discover promoters from genes that are actively expressed in meiosis.</p> <p>Results</p> <p>In a screen for meiotically-active promoters, we examined ten promoter sequences that are associated with novel meiotic candidate genes. Each promoter was tested by expressing a GFP reporter gene in <it>Arabidopsis</it>. Characterization of regulatory regions revealed that these meiotically-active promoters possessed conserved motifs and motif arrangement. Some of the promoters unite optimal properties which are invaluable for meiosis-directed studies such as delivering specific gene expression in early meiosis I and/or meiosis II. Furthermore, the examination of homologs of the corresponding genes within green plants points to a great potential of applying the information from <it>Arabidopsis</it> to other species, especially crop plants.</p> <p>Conclusions</p> <p>We identified ten novel meiotically-active promoters; which, along with their homologs, are prime candidates to specifically drive gene expression during meiosis in plants and can thus provide important tools for meiosis study and crop breeding.</p
    corecore