5 research outputs found

    ЭкспрСссия Π³Π΅Π½ΠΎΠ² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° Ρ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΈ Π»ΠΈΠ³Π½ΠΈΠ½Π° Π² Zinnia elegans Π² условиях засолСния

    Get PDF
    Salinization is a common type of agricultural land degradation. It causes inhibition of plant growth and productivity. Previous research into mechanisms of plant resistance to salinity and other stressors has shown that one of nonspecific responses is cell wall lignification which limits translocation of water and ions in the tissues and the whole plant. The current study aims to investigate the responses of Zinnia elegans Jacq. grown under regular soil irrigation with 50 mM NaCl. Plant growth parameters and biochemical characteristics, such as the level of hydrogen peroxide and malondialdehyde (MDA), and phenolics and lignin content, were determined. The level of expression of genes encoding the biosynthesis of phenolic compounds and lignin was evaluated by the relative number of transcripts. Application of 50 mM NaCl to soil decreased plant growth and induced lipid peroxidation in stem tissues, despite an increase in the concentration of phenolic compounds. It means that the antioxidant potential of produced phenolics might be insufficient for plant protection. The amount of lignin in stem tissues increased mainly due to Klason lignin which is known to limit cell elongation. The concentration of phenolic compounds correlated with the expression of PAL, C4H and 4CL genes involved in their biosynthesis; and the amount of lignin correlated with the expression level of CCR, CAD, PRX, and LAC genesЗасолСниС – распространСнный Π²ΠΈΠ΄ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… зСмСль. Оно Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΡƒΠ³Π½Π΅Ρ‚Π΅Π½ΠΈΠ΅ роста ΠΈ продуктивности растСний. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² устойчивости растСний ΠΊ засолСнию ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ лигнификация ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнки – ΠΎΠ΄Π½Π° ΠΈΠ· нСспСцифичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ растСний Π½Π° этот ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ стрСссоры, Ρ‡Ρ‚ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ транспорт Π²ΠΎΠ΄Ρ‹ ΠΈ ΠΈΠΎΠ½ΠΎΠ² Π² тканях ΠΈ Ρ†Π΅Π»ΠΎΠΌ растСнии. НастоящСС исслСдованиС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ растСний Zinnia elegans Jacq. Π½Π° засолСниС Π² Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ экспСримСнтС ΠΏΡ€ΠΈ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ Π½Π° ΠΏΠΎΡ‡Π²Π΅ с рСгулярным ΠΏΠΎΠ»ΠΈΠ²ΠΎΠΌ 50 мМ NaCl. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ростовыС характСристики растСний ΠΈ биохимичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ΠΈ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ диальдСгида (ΠœΠ”Π), содСрТаниС Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний ΠΈ Π»ΠΈΠ³Π½ΠΈΠ½Π°. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… биосинтСз Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний ΠΈ Π»ΠΈΠ³Π½ΠΈΠ½Π°, ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ количСству транскриптов. ВнСсСниС 50 mM NaCl Π² ΠΏΠΎΡ‡Π²Ρƒ подавляло рост растСний ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΎ пСрСкисноС окислСниС Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² Π² тканях стСбля, нСсмотря Π½Π° ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний. ВСроятно, ΠΈΡ… антиоксидантного ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π±Ρ‹Π»ΠΎ нСдостаточно для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ растСний. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π»ΠΈΠ³Π½ΠΈΠ½Π° Π² тканях стСбля ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»ΠΎΡΡŒ Π² основном Π·Π° счСт Π»ΠΈΠ³Π½ΠΈΠ½Π° Класона, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π» растяТСниС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ транскриптов Π³Π΅Π½ΠΎΠ² PAL, C4H, 4CL, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² синтСзС Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний, ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π» с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ; Π° Π³Π΅Π½ΠΎΠ² CCR, CAD, PRX ΠΈ LAC – с количСством Π»ΠΈΠ³Π½ΠΈΠ½

    Plant Growth Promoting Activity and Metal Tolerance of Bacteria Isolated from Rhizosphere of the Orchid Epipactis atrorubens Growing on Serpentine Substrates of the Middle Urals

    Get PDF
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ризосфСры ΠΎΡ€Ρ…ΠΈΠ΄Π΅ΠΈ Epipactis atrorubens (Hoffm.) Besser. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… морфологичСских, физиологичСских ΠΈ биохимичСских характСристик Ρ€ΠΈΠ·ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ растСний, ΠΏΡ€ΠΎΠΈΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… Π² Π΄Π²ΡƒΡ… Π±ΠΈΠΎΡ‚ΠΎΠΏΠ°Ρ… Π½Π° сСрпСнтинитовых ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ…: Π² СстСствСнном лСсном Ρ„ΠΈΡ‚ΠΎΡ†Π΅Π½ΠΎΠ·Π΅ (Ρ„ΠΎΠ½ΠΎΠ²Ρ‹ΠΉ участок) ΠΈ Π½Π° ΠΎΡ‚Π²Π°Π»Π΅ послС Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ асбСста (БвСрдловская ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π‘Ρ€Π΅Π΄Π½ΠΈΠΉ Π£Ρ€Π°Π»). ΠžΡ†Π΅Π½ΠΊΠ° Ρ€ΠΎΡΡ‚ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ (PGP) активности Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π½Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° достовСрных Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ исслСдованными участками ΠΏΠΎ способности Ρ€ΠΈΠ·ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΊ синтСзу индолил‑3-уксусной кислоты (ИУК) ΠΈ ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ фосфатов. Однако доля изолятов, способных ΠΊ азотфиксации, Π±Ρ‹Π»Π° Π²Ρ‹ΡˆΠ΅ Π² ризосфСрС E. atrorubens, ΠΏΡ€ΠΎΠΈΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅Π³ΠΎ Π½Π° ΠΎΡ‚Π²Π°Π»Π΅, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ„ΠΎΠ½ΠΎΠ²Ρ‹ΠΌ мСстообитаниСм. Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ изолятов ΠΊ тяТСлым ΠΌΠ΅Ρ‚Π°Π»Π»Π°ΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ максимальной ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π° (400, 600 ΠΈ 1000 ΠΌΠ³/Π» соотвСтствСнно для Ni, Cu ΠΈ Zn), ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ отмСчался рост Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. Показано, Ρ‡Ρ‚ΠΎ Ρ€ΠΈΠ·ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ с ΠΎΡ‚Π²Π°Π»Π° оказались Π±ΠΎΠ»Π΅Π΅ устойчивыми ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ концСнтрациям ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с СстСствСнным лСсным Ρ„ΠΈΡ‚ΠΎΡ†Π΅Π½ΠΎΠ·ΠΎΠΌ. На основС молСкулярно-гСнСтичСского Π°Π½Π°Π»ΠΈΠ·Π° изолятов с Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ PGPβ€‘Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ (ИУК >1,0 ΠΌΠ³/Π»; PO4 3- >50,0 ΠΌΠ³/Π») ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сходство ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ мСстообитаниями ΠΏΠΎ Ρ€ΠΎΠ΄ΠΎΠ²ΠΎΠΉ принадлСТности Ρ€ΠΈΠ·ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. atrorubens: Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Π»ΠΈ прСимущСствСнно ΠΊ Ρ€ΠΎΠ΄Π°ΠΌ Buttiauxella ΠΈ Pseudomonas. Π’ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… экспСримСнтах протСстирована Ρ€ΠΎΡΡ‚ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π½Π° сСмСнах Ρ†ΠΈΠ½Π½ΠΈΠΈ. Π˜Π½ΠΎΠΊΡƒΠ»ΡΡ†ΠΈΡ сСмян Pseudomonas sp. ΠΈ Buttiauxella sp. Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»Π° Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ влияния Π½Π° ΠΈΡ… Π²ΡΡ…ΠΎΠΆΠ΅ΡΡ‚ΡŒ, ΠΎΠ΄Π½Π°ΠΊΠΎ Buttiauxella sp. способствовала ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½Ρ‹ проростков Π² сравнСнии с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ (Π² срСднСм Π½Π° 25 %). Π‘Π΄Π΅Π»Π°Π½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Π΅ изоляты Ρ€ΠΈΠ·ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ E. atrorubens, благодаря ΠΈΡ… Ρ€ΠΎΡΡ‚ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ активности ΠΈ мСталлоустойчивости, ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ€Ρ…ΠΈΠ΄Π΅ΠΈ Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈThe article presents data obtained in the study of bacteria isolated from the rhizosphere of the orchid Epipactis atrorubens (Hoffm.) Besser. Analysis was carried out to compare some morphological, physiological, and biochemical characteristics of plant rhizobacteria growing on serpentine rocks in two biotopes: in the natural forest community (control habitat) and on the asbestos mine dump (the Sverdlovsk region, Middle Urals). An assessment of the plant growth promoting (PGP) activity of the isolated strains did not show significant differences in the ability of rhizobacteria to synthesize indol‑3-acetic acid (IAA) and solubilize phosphates between the study sites. However, the proportion of isolates capable of nitrogen fixation was higher in the rhizosphere of E. atrorubens growing on the dump compared to the control habitat. The tolerance of isolates to heavy metals was assessed by the maximum metal concentration (400, 600, and 1000 mg/L, respectively, for Ni, Cu, and Zn) at which bacterial growth was observed. Rhizobacteria from the dump were found to be more resistant to elevated concentrations of metals compared to their counterparts from the natural forest community. The molecular genetic analysis of isolates with the highest PGP‑activity (IAA >1.0 mg/L; PO4 3- >50.0 mg/L) revealed that most of the E. atrorubens rhizobacteria in both habitats belonged to the genera Buttiauxella and Pseudomonas. In model experiments, the PGP ability of four selected strains was tested on zinnia seeds. Seed inoculation with Pseudomonas sp. and Buttiauxella sp. did not have any significant effect on their germination; however, Buttiauxella sp. contributed to the increase in the length of seedlings compared with the control (by 25 %, on average). It has been suggested that the selected isolates of E. atrorubens rhizobacteria, due to their growth promoting activity and metal tolerance, can facilitate naturalization of the orchid in an industrially disturbed are

    ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ассоциированных с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнкой ΠΈ Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½Ρ‹Ρ… пСроксидаз Π² условиях послСдСйствия ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ Π² растСниях Nicotiana tabacum

    Get PDF
    The adaptation of plants to an excess of heavy metals in the environment and their recovery after elimination of the stressor is of interest in connection with the large-scale pollution of ecosystems and their remediation. This study is aimed at the aftereffect of copper ions (100 and 300 ΞΌM) in plants of Nicotiana tabacum L. The level of plant stress markers (concentration of hydrogen peroxide, activity of class III peroxidases – benzidine and guaiacol, their isoforms) during the recovery period after the removal of copper ions from the environment was evaluated in pretreatment by copper ions of different concentration and the use of control plants. During the recovery period, the concentration of hydrogen peroxide in plant organs (root, stem, and leaves) was high compared to the control. The responses of the roots and shoots under the aftereffect of the stressor were different. The activity of cytosolic guaiacol peroxidase and cell wall-bound peroxidases in root tissues increased according to the increase in Н2О2. In plants pretreated with a lower copper concentration, the activity of cell wall-bound peroxidases in the stem and cytosolic and cell wall-bound benzidine peroxidases in leaves increased. In contrast, pretreatment with a high copper concentration led to a decrease in the activity of peroxidases during the period of plant recovery. Thus, plant organs differed in the content of H2O2 and the activity of class III peroxidases localized in different compartments (apoplast and cytosol) and in their ability to recover after the removal of the stressorАдаптация растСний ΠΊ ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΡƒ тяТСлых ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² срСдС ΠΈ ΠΈΡ… восстановлСниС послС элиминации стрСссора ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ интСрСс Π² связи с ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹ΠΌ загрязнСниСм экосистСм. НашС исслСдованиС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ послСдСйствия ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ (100 ΠΈ 300 ΞΌM) Π² растСниях Nicotiana tabacum L. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΡΡ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² стрСсса растСний (содСрТаниС пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π°, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ пСроксидаз III класса – Π±Π΅Π½Π·ΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΈ гваяколовой, ΠΈΡ… ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌΡ‹) Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈΡ… восстановлСния послС удалСния ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ΅Π΄ΠΈ ΠΈΠ· срСды. ВыявлСно ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ пСроксида Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° Π² тканях корня, стСбля ΠΈ Π»ΠΈΡΡ‚ΡŒΠ΅Π². Π Π΅Π°ΠΊΡ†ΠΈΠΈ корня ΠΈ ΠΏΠΎΠ±Π΅Π³Π° Π² условиях послСдСйствия стрСссора Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½ΠΎΠΉ гваяколовой пСроксидазы ΠΈ ассоциированных с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнкой пСроксидаз Π² тканях корня ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π»Π°ΡΡŒ Π½Π° Ρ„ΠΎΠ½Π΅ увСличСния содСрТания Н2О2. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ активности ассоциированных с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнкой пСроксидаз Π² стСблС, Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ ассоциированной с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнкой Π±Π΅Π½Π·ΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ пСроксидазы Π² Π»ΠΈΡΡ‚ΡŒΡΡ… наблюдали Ρƒ растСний, ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅Π΄ΠΈ. ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° высокой ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅Π΄ΠΈ, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ сниТСнию активности пСроксидаз Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ восстановлСния растСний. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΎΡ€Π³Π°Π½Ρ‹ растСний Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Н2О2 ΠΈ активности пСроксидаз III класса, Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² Ρ€Π°Π·Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚Π°Ρ… (апопласт ΠΈ Ρ†ΠΈΡ‚ΠΎΠ·ΠΎΠ»ΡŒ), ΠΈ ΠΏΠΎ способности Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒΡΡ послС снятия дСйствия стрСссор

    Expression of a Stilbene Synthase Gene from the Vitis labrusca x Vitis vinifera L. Hybrid Increases the Resistance of Transgenic Nicotiana tabacum L. Plants to Erwinia carotovora

    No full text
    ‘Isabel’ grape (Vitis labrusca x V. vinifera L. hybrid) is one of the main grape cultivars in Russia and some other countries for processing, due to its vigor, tolerance to the main fungal diseases, high yield and potential for sugar accumulation. The stilbene synthase gene VlvSTS was isolated from the hybrid grape cv. Isabel and cloned into a pSS plant transformation vector under the control of a constitutive 35S RNA double promoter of the cauliflower mosaic virus, CaMV 35SS. VlvSTS-gene containing transgenic tobacco lines were obtained and analyzed. For the first time plants expressing the VlvSTS gene were shown to have an enhanced resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora B15. Transgenic plants were tested for resistance to a number of fungal pathogens. The plants were resistant to the grey mould fungus Botrytis cinerea, but not to the fungi Fusarium oxysporum, F. sporotrichioides, or F. culmorum. According to the results of a high performance liquid chromatography-mass spectrometry analysis, the amount of trans-resveratrol in leaves of transgenic plants with the highest expression of the VlvSTS gene was in a range from 150 to 170 μg/g of raw biomass. Change in the color and a decreased anthocyanin content in the flower corollas of transgenic plants were observed in transgenic lines with the highest expression of VlvSTS. A decrease in total flavonoid content was found in the flower petals but not the leaves of these tobacco lines. High expression of the VlvSTS gene influenced pollen development and seed productivity in transgenic plants. The size of pollen grains increased, while their total number per anther decreased. A decrease in the number of fertile pollen grains resulted in a decreased average weight of a seed boll in transgenic plants

    Антиоксидантная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ химичСский состав экстрактов ксилотрофных Π³Ρ€ΠΈΠ±ΠΎΠ² Π‘Ρ€Π΅Π΄Π½Π΅Π³ΠΎ Π£Ρ€Π°Π»Π°, ΠΏΡ€ΠΎΠΈΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° Π±Π΅Ρ€Π΅Π·Π΅

    Get PDF
    The search for new natural sources of biologically active substances is a major issue in pharmaceutical industry. Xylotrophic basidiomycetes are common in forests worldwide, but as a prospective raw source of biologically active compounds they have not been studied as extensively as plants and other groups of fungi. The study is aimed to determine the chemical composition and antioxidant activity of extracts from 10 species of tinder fungi growing on birch and common in the forests in Russia. The chaga muchroom (Inonotus obliquus), traditionally used in medicine, was chosen as a standard species. Extracts from fruiting bodies were obtained with water or 95 % ethanol. They contained 4 to 8 types of free amino acids including 2 to 6 essential ones. Perennial basidiocarps were shown to be richer in phenolic compounds and poorer in amino acids than annual ones. Alkaloids and saponins were found in perennial basidiocarps of two species, saponins were also found in annual basidiocarps of one species. Water and alcohol extracts differed in composition and concentration of extractives, and showed different antioxidant (inhibition of lipid peroxidation) and antiradical (ABTS‑test, inhibition of NO production) activity. This way it was shown that the nature of the solvent extraction agent is important for the manifestation of biological activity. In most tests, water extracts from chaga showed better antioxidant properties; extracts from Piptoporus betulinus and Fomitopsis pinicola were also effective as antioxidants, which may be promising avenues for future researchПоиск Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… источников биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств остаСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ. ΠšΡΠΈΠ»ΠΎΡ‚Ρ€ΠΎΡ„Π½Ρ‹Π΅ Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΌΠΈΡ†Π΅Ρ‚Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСны Π² лСсах, Π½ΠΎ ΠΊΠ°ΠΊ ΡΡ‹Ρ€ΡŒΠ΅ для получСния биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний ΠΎΠ½ΠΈ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹, Ρ‡Π΅ΠΌ растСния ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π³Ρ€ΠΈΠ±ΠΎΠ². ЦСль исслСдования – ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ химичСского состава ΠΈ антиоксидантной активности экстрактов 10 Π²ΠΈΠ΄ΠΎΠ² Ρ‚Ρ€ΡƒΡ‚ΠΎΠ²Ρ‹Ρ… Π³Ρ€ΠΈΠ±ΠΎΠ², ΠΏΡ€ΠΎΠΈΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° Π±Π΅Ρ€Π΅Π·Π΅ ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнных Π² лСсах России. Π’ качСствС Π²ΠΈΠ΄Π° сравнСния Π²Ρ‹Π±Ρ€Π°Π½Π° Ρ‡Π°Π³Π° Inonotus obliquus, Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠ°Ρ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅. Π­ΠΊΡΡ‚Ρ€Π°ΠΊΡ†ΠΈΡŽ вСщСств ΠΈΠ· ΠΏΠ»ΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π» ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π²ΠΎΠ΄ΠΎΠΉ ΠΈΠ»ΠΈ 95%-Π½Ρ‹ΠΌ этанолом. Π’ экстрактах ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ ΠΎΡ‚ 4 Π΄ΠΎ 8 Ρ‚ΠΈΠΏΠΎΠ² свободных аминокислот, Π² Ρ‚ΠΎΠΌ числС ΠΎΡ‚ 2 Π΄ΠΎ 6 Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ…. Показано, Ρ‡Ρ‚ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΠ΅ Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΊΠ°Ρ€ΠΏΡ‹ Π±ΠΎΠ³Π°Ρ‡Π΅ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ соСдинСниями ΠΈ Π±Π΅Π΄Π½Π΅Π΅ аминокислотами, Ρ‡Π΅ΠΌ ΠΎΠ΄Π½ΠΎΠ»Π΅Ρ‚Π½ΠΈΠ΅. Π’ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΊΠ°Ρ€ΠΏΠ°Ρ… Π΄Π²ΡƒΡ… Π²ΠΈΠ΄ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π°Π»ΠΊΠ°Π»ΠΎΠΈΠ΄Ρ‹ ΠΈ сапонины; Ρ‚Π°ΠΊΠΆΠ΅ сапонины ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° с ΠΎΠ΄Π½ΠΎΠ»Π΅Ρ‚Π½ΠΈΠΌΠΈ Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΊΠ°Ρ€ΠΏΠ°ΠΌΠΈ. Π’ΠΎΠ΄Π½Ρ‹Π΅ ΠΈ спиртовыС экстракты Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΏΠΎ составу ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ экстрактивных вСщСств ΠΈ проявляли Ρ€Π°Π·Π½ΡƒΡŽ Π°Π½Ρ‚ΠΈΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ (ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ пСрСкисного окислСния Π»ΠΈΠΏΠΈΠ΄ΠΎΠ²) ΠΈ Π°Π½Ρ‚ΠΈΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΡƒΡŽ (ABTS‑тСст, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ NO) Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° экстрагСнта ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для проявлСния биологичСской активности. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ тСстов Π²ΠΎΠ΄Π½Ρ‹Π΅ экстракты Ρ‡Π°Π³ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠ΅ антиоксидантныС свойства, ΠΎΠ΄Π½Π°ΠΊΠΎ с Π½ΠΈΠΌΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ сопоставимы экстракты Piptoporus betulinus ΠΈ Fomitopsis pinicola, Ρ‡Ρ‚ΠΎ опрСдСляСт пСрспСктивы ΠΈΡ… дальнСйшСго ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈ
    corecore