827 research outputs found

    The energy of the analytic lump solution in SFT

    Get PDF
    In a previous paper a method was proposed to find exact analytic solutions of open string field theory describing lower dimensional lumps, by incorporating in string field theory an exact renormalization group flow generated by a relevant operator in a worldsheet CFT. In this paper we compute the energy of one such solution, which is expected to represent a D24 brane. We show, both numerically and analytically, that its value corresponds to the theoretically expected one.Comment: 45 pages, former section 2 suppressed, Appendix D added, comments and references added, typos corrected. Erratum adde

    Boundary State from Ellwood Invariants

    Full text link
    Boundary states are given by appropriate linear combinations of Ishibashi states. Starting from any OSFT solution and assuming Ellwood conjecture we show that every coefficient of such a linear combination is given by an Ellwood invariant, computed in a slightly modified theory where it does not trivially vanish by the on-shell condition. Unlike the previous construction of Kiermaier, Okawa and Zwiebach, ours is linear in the string field, it is manifestly gauge invariant and it is also suitable for solutions known only numerically. The correct boundary state is readily reproduced in the case of known analytic solutions and, as an example, we compute the energy momentum tensor of the rolling tachyon from the generalized invariants of the corresponding solution. We also compute the energy density profile of Siegel-gauge multiple lump solutions and show that, as the level increases, it correctly approaches a sum of delta functions. This provides a gauge invariant way of computing the separations between the lower dimensional D-branes.Comment: v2: 63 pages, 14 figures. Major improvements in section 2. Version published in JHE

    Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps

    Get PDF
    We propose a remarkably simple solution of cubic open string field theory which describes inhomogeneous tachyon condensation. The solution is in one-to-one correspondence with the IR fixed point of the RG-flow generated in the two--dimensional world-sheet theory by integrating a relevant operator with mild enough OPE on the boundary. It is shown how the closed string overlap correctly captures the shift in the closed string one point function between the UV and the IR limits of the flow. Examples of lumps in non-compact and compact transverse directions are given.Comment: 45 pages. v2: typos and minor improvements. v3: submitted to jhe

    Comments on regularization of identity based solutions in string field theory

    Full text link
    We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.Comment: 24 pages, two subsections added, two references adde

    Nuclear energy density optimization: Shell structure

    Full text link
    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys. Rev. C after second review by refere

    MW and sin^2\theta_eff in Split SUSY: present and future expectations

    Full text link
    We analyse the precision electroweak observables MW and sin^2\theta_eff and their correlations in the recently proposed Split SUSY model. We compare the results with the Standard Model and Minimal Supersymmetric Standard Model predictions, and with present and future experimental accuracies. Present experimental accuracies in (MW, sin^2\theta_eff) do not allow constraints to be placed on the Split SUSY parameter space. We find that the shifts in (MW, sin^2\theta_eff) induced by Split SUSY can be larger than the anticipated accuracy of the GigaZ option of the International Linear Collider, and that the most sensitive observable is sin^2\theta_eff. These large shifts are possible also for large chargino masses in scenarios with small tan(\beta) =~ 1.Comment: LaTeX, 13 pages, 4 figures. Comments adde

    Disk Partition Function and Oscillatory Rolling Tachyons

    Full text link
    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et. al. and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same.Comment: 17 pages, 2 figures. v4: discussion clarified, appendix added, conclusions unchanged; version to appear in J.Phys.

    Charged Current Universality in the MSSM

    Get PDF
    We compute the complete one-loop contributions to low-energy charged current weak interaction observables in the Minimal Supersymmetric Standard Model (MSSM). We obtain the constraints on the MSSM parameter space which arise when precision low-energy charged current data are analyzed in tandem with measurements of the muon anomaly. While the data allow the presence of at least one light neutralino, they also imply a pattern of mass splittings among first and second generation sleptons and squarks which contradict predictions of widely used models for supersymmetry breaking mediation.Comment: 4 pages, 2 figure

    Constraints on a class of classical solutions in open string field theory

    Full text link
    We calculate boundary states for general string fields in the KBc subalgebra under some regularity conditions based on the construction by Kiermaier, Okawa, and Zwiebach. The resulting boundary states are always proportional to that for the perturbative vacuum |B>. In this framework, the equation of motion implies that boundary states are independent of the auxiliary parameter s associated with the length of the boundary. By requiring the s-independence, we show that the boundary states for classical solutions in our class are restricted to \pm|B> and 0. In particular, there exist no string fields which reproduce boundary states for multiple D-brane backgrounds. While we know that the boundary states |B> and 0 are reproduced by solutions for the perturbative vacuum and the tachyon vacuum, respectively, no solutions reproducing -|B> have been constructed. In this paper we also propose a candidate for such a solution, which may describe the ghost D-brane.Comment: 47 pages, 3 figures; v2: appendix B is expande

    Rare Kaon Decay K^+ --> \pi^+ \nu \bar{\nu} in SU(3)_C X SU(3)_L X U(1)_N Models

    Full text link
    The rare kaon decay K^+ --> \pi^+ \nu \bar{\nu} is considered in the framework of the models based on the SU(3)_C X SU(3)_L X U(1)_N (3 - 3 - 1) gauge group. It is shown that a lower bound of the Z' mass in the 3 - 3 - 1 model with right-handed neutrinos at a value of 3 TeV is derived, while that in the minimal version -- 1.7 TeV.Comment: 7 pages, 1 figure, late
    • 

    corecore