6 research outputs found

    Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides

    No full text
    The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 –lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu–lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.07 μM versus more than 100 μM for MDA-MB-231) and almost innocuous for normal breast cells (IC50 = 91.46 μM for MCF-12A). Docking studies have shown that compound 18 interacts with the receptor in the same cavity as estradiol although the extra aromatic ring is involved in additional binding interactions with residue W383. The role of W383 and the extended binding mode were confirmed by site-directed mutagenesis

    The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration

    No full text
    Objectives: The use of efflux pump inhibitors may be a powerful strategy to overcome transporter-mediated bacterial multidrug resistance. In the present study, we set out to investigate the potency of tariquidar, a third-generation P-glycoprotein inhibitor in clinical development, for overcoming bacterial resistance towards ciprofloxacin. Methods: Staphylococcus aureus 29213 (SA29213) and S. aureus 1199B (SA1199B), which overexpresses the multidrug transporter NorA, as well as Pseudomonas aeruginosa 27853 and Stenotrophomonas maltophilia BAA-85, which expresses SmeDEF, were exposed to ciprofloxacin in the presence and absence of tariquidar or, for comparative reasons, elacridar. Activity of both P-glycoprotein inhibitors was evaluated by determination of MICs and time-kill curves, and by quantification of uptake of ciprofloxacin into bacterial cells. Results: Activity of tariquidar and elacridar was comparable for S. aureus strains, and both dose-dependently increased susceptibility towards ciprofloxacin. Highest effects were observed for SA1199B, where the addition of tariquidar resulted in a 10-fold reduction of the ciprofloxacin MIC, while no effect was observed for P. aeruginosa. For S. maltophilia, elacridar but not tariquidar improved susceptibility. Uptake of [(14)C] ciprofloxacin and modification of susceptibility showed significant correlations (r = 0.89, P < 0.0001). Tariquidar had no intrinsic activity against any strain tested. Conclusions: We conclude that tariquidar has potent inhibitory effect against certain bacterial efflux pumps in vitro. Their high activity at clinically achievable concentrations might yield this class of drugs promising for future applications in infectious diseases
    corecore