406 research outputs found
Mandatory Arrest and No-Drop Policies: Victim Empowerment in Domestic Violence Cases
In recent decades, arrest and prosecution have been applied to perpetrators of domestic violence with increasing severity, representing an important step in recognizing domestic violence as a crime. Some jurisdictions have taken the war against domestic violence a step further, by employing aggressive mandatory arrest and no-drop prosecution policies. These policies have been met with mixed reactions from advocates of battered women and law enforcement agencies, who debate the effectiveness of the policies, both in curbing crime and in treating the needs of victims. This Note analyzes whether and to what extent specific aggressive arrest and prosecution policies are compatible with a victim-centered empowerment approach to domestic violence advocacy. It concludes by recommending various compromise approaches, which treat domestic violence as the crime that it is while at the same time empowering victims to become survivors
Longitudinal Health Outcomes and Treatment Utilization Among Emerging, Early-Mid, and Older Rural Adults Using Stimulants
There is limited knowledge about age-related differences in health outcomes and treatment utilization among rural stimulant users. The current study examined physical health, mental health, and treatment utilization (hospital, mental health, and substance use care) among 710 stimulant users living in rural areas of the United States. Generalized estimating equations (GEE) were used to examine associations between age and physical health, mental health, and treatment utilization over a 3-year period. Analyses controlled for participants’ gender, race, and education. To capture age-related differences, participants were grouped into emerging adults (18–25 years old, n = 223), early-mid adults (26–44 years old; n = 384), and older adults (45–61 years old; n = 103). At baseline, older stimulant users were in significantly poorer health even though they had significantly fewer substance use problems than emerging adult users. GEE models indicated that substance use outcomes improved for all participants over the course of the study but other outcomes remained stable. Older stimulant users continued to have worse physical health and mental health, even though they had fewer substance use problems, than the other age groups. Older adults also used more hospital and mental health services than the other age groups. White participants tended to be at higher risk for negative outcomes than nonwhite participants. We conclude that rural older adults who use stimulants have poor health despite having milder substance use problems and using more health care resources, and need targeted intervention to improve health outcomes
Validity of Robot-based Assessments of Upper Extremity Function
Objective To examine the validity of 5 robot-based assessments of arm motor function post-stroke. Design Cross sectional. Setting Outpatient clinical research center. Participants Volunteer sample of 40 participants, age \u3e18 years, 3-6 months post-stroke, with arm motor deficits that had plateaued. Intervention None. Main Outcome Measures Clinical standards included the Fugl-Meyer Arm Motor Scale (FMA), and 5 secondary motor outcomes: hand/wrist subsection of the FMA; Action Research Arm Test (ART); Box & Blocks test (B/B); hand subscale of Stroke Impact Scale-2 (SIS); and the Barthel Index (BI). Robot-based assessments included: wrist targeting; finger targeting; finger movement speed; reaction time; and a robotic version of the (B/B) test. Anatomical measures included percentage injury to the corticospinal tract (CST) and primary motor cortex (M1, hand region) obtained from MRI . Results Subjects had moderate-severe impairment (arm FMA scores = 35.6±14.4, range 13.5-60). Performance on the robot-based tests, including speed (r=0.82, p\u3c0.0001), wrist targeting (r=0.72, p\u3c0.0001), and finger targeting (r=0.67, p\u3c0.0001) correlated significantly with the FMA scores. Wrist targeting (r=0.57 - 0.82) and finger targeting (r=0.49 - 0.68) correlated significantly with all 5 secondary motor outcomes and with percent CST injury. The robotic version of the B/B correlated significantly with the clinical B/B test but was less prone to floor effect. Robot-based assessments were comparable to FMA score in relation to percent CST injury and superior in relation to M1 hand injury. Conclusions The current findings support using a battery of robot-based methods for assessing the upper extremity motor function in subjects with chronic stroke
NMR Analysis on Microfluidic Devices by Remote Detection
We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal, and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil
The empirical replicability of task-based fMRI as a function of sample size
Replicating results (i.e. obtaining consistent results using a new independent dataset) is an essential part of good science. As replicability has consequences for theories derived from empirical studies, it is of utmost importance to better understand the underlying mechanisms influencing it. A popular tool for non-invasive neuroimaging studies is functional magnetic resonance imaging (fMRI). While the effect of underpowered studies is well documented, the empirical assessment of the interplay between sample size and replicability of results for task-based fMRI studies remains limited. In this work, we extend existing work on this assessment in two ways. Firstly, we use a large database of 1400 subjects performing four types of tasks from the IMAGEN project to subsample a series of independent samples of increasing size. Secondly, replicability is evaluated using a multi-dimensional framework consisting of 3 different measures: (un)conditional test-retest reliability, coherence and stability. We demonstrate not only a positive effect of sample size, but also a trade-off between spatial resolution and replicability. When replicability is assessed voxelwise or when observing small areas of activation, a larger sample size than typically used in fMRI is required to replicate results. On the other hand, when focussing on clusters of voxels, we observe a higher replicability. In addition, we observe variability in the size of clusters of activation between experimental paradigms or contrasts of parameter estimates within these
A Period Seroprevalence (SARS-CoV-2) Survey in MHCCN Cancer Healthcare Workers (HCWs) Providing Patient Care during the Height of the Outbreak: A Registry Study (Initial Progress)
Introduction: There is little information on the basic epidemiologic and serologic profile(s) of the novel SARSCoV- 2 coronavirus especially in HCWs employed in rural settings. We embarked on a period seroprevalence study in the MaineHealth Cancer Network (MHCCN) to document Covid-19 exposure in our rural cancer care workforce. Our fundamental hypothesis is that despite implementing procedures to safeguard patients and the use of appropriate PPE in the care of known source patients/PUIs in both the inpatient and outpatient cancer care settings a small, but not insignificant number of cancer care providers (hereafter referred to as cancer HCWs) will have evidence of exposure by virtue of plasma antibody seroconversion.https://knowledgeconnection.mainehealth.org/lambrew-retreat-2021/1001/thumbnail.jp
Paraneoplastic thrombocytosis in ovarian cancer
<p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that
platelets play in abetting cancer growth are unclear.</p>
<p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse
models of epithelial ovarian cancer were used to explore the underlying mechanisms
of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p>
<p>Results: Thrombocytosis was significantly associated with advanced disease and shortened
survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated
in patients who had thrombocytosis as compared with those who did not. In mouse
models, increased hepatic thrombopoietin synthesis in response to tumor-derived
interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis
in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in
tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In
addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of
paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet
antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor
growth and angiogenesis.</p>
<p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic
thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have
therapeutic potential. </p>
Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes
Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode
Increased SIRT3 combined with PARP inhibition rescues motor function of SBMA mice.
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR
The association of circulating amylin with β-amyloid in familial Alzheimer's disease.
Introduction: This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). Methods: Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. Results: Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. Discussion: These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms
- …