1,033 research outputs found
Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis
24 Pags., 9 Figs., 2 Tabls., with Supplemental Data (15 Figs., 3 Tabls., 1 Method, 1 Data Set).The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.We acknowledge postdoctoral fellowships to M.B. from the Alexander von Humboldt Foundation and the Spanish Ministry of Science and Innovation; a Deutsche Forschungsgemeinshaft Heisenberg fellowship and funding from the FRONTIERS program at the University of Heidelberg, Germany, and the European Union InP Public Health Impact of Long-Term, Low-Level Mixed Element Exposure in Susceptible Population Strata (FOOD-CT-2006-016253) to U.K.; a grant from the National Science Foundation (IOS-0919739) to E.L.C.; a postdoctoral fellowship from the Spanish Foundation of Science and Technology (MEC-FECYT) to D.C.; National Institutes of Health Grant GM42143 to S.S.M.; and support from the University of California, Los Angeles–Department of Energy Institute for Genomics and Proteomics under Contract DE-FC02-02ER63421 to M.P.Peer reviewe
Grain-size variability in debris flows of different runout lengths, Wenchuan, China
Debris-flow grain-size distributions (GSDs) control runout length and mobility. Wide, bimodal GSDs and those containing a higher proportion of silt and clay have been shown experimentally to increase runout length. However, the relationship between grain size and mobility has not been well established in field conditions. Here, we compared the grain-size characteristics of two debris flows with considerably different runout lengths (1.5 km vs. 8 km) to understand the role of grain size in governing runout. The two debris flows were triggered in the same rainfall event from coseismic landslide debris generated in the 2008 Wenchuan earthquake in catchments with similar lithology and topography. We compared the deposited GSDs and their spatial patterns using our rare, three-dimensional GSD datasets. Surprisingly, the proportions of each size fraction deposited by the two flows were statistically indistinguishable. The spatial pattern of grain size differed between the two flows, with evidence of inverse grading only preserved in the smaller deposit. From these observations, we can infer that the GSDs of both flows were determined by the coseismic landslide source material, and that there was little difference in the GSDs of material entrained as the flows bulked. The contrasting spatial distributions of grains indicated that different internal processes were dominant within the two flows. These findings demonstrate that where GSDs are dominated by coarse grains and are governed by similar source conditions, grain size plays a lesser role relative to sediment supply and hydrology in controlling the runout length of large catastrophic post-earthquake debris flows
Complete Genome Sequence of Geobacter sp. Strain FeAm09, a Moderately Acidophilic Soil Bacterium
A moderately acidophilic Geobacter sp. strain, FeAm09, was isolated from forest soil. The complete genome sequence is 4,099,068 bp with an average GC content of 61.1%. No plasmids were detected. The genome contains a total of 3,843 genes and 3,608 protein-coding genes, including genes supporting iron and nitrogen biogeochemical cycling
StateLens: A Reverse Engineering Solution for Making Existing Dynamic Touchscreens Accessible
Blind people frequently encounter inaccessible dynamic touchscreens in their
everyday lives that are difficult, frustrating, and often impossible to use
independently. Touchscreens are often the only way to control everything from
coffee machines and payment terminals, to subway ticket machines and in-flight
entertainment systems. Interacting with dynamic touchscreens is difficult
non-visually because the visual user interfaces change, interactions often
occur over multiple different screens, and it is easy to accidentally trigger
interface actions while exploring the screen. To solve these problems, we
introduce StateLens - a three-part reverse engineering solution that makes
existing dynamic touchscreens accessible. First, StateLens reverse engineers
the underlying state diagrams of existing interfaces using point-of-view videos
found online or taken by users using a hybrid crowd-computer vision pipeline.
Second, using the state diagrams, StateLens automatically generates
conversational agents to guide blind users through specifying the tasks that
the interface can perform, allowing the StateLens iOS application to provide
interactive guidance and feedback so that blind users can access the interface.
Finally, a set of 3D-printed accessories enable blind people to explore
capacitive touchscreens without the risk of triggering accidental touches on
the interface. Our technical evaluation shows that StateLens can accurately
reconstruct interfaces from stationary, hand-held, and web videos; and, a user
study of the complete system demonstrates that StateLens successfully enables
blind users to access otherwise inaccessible dynamic touchscreens.Comment: ACM UIST 201
Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy.
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention
Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduces mitochondrial ROS production
Signal Transducer and Activator of Transcription 3 (STAT3) has been tied to various physiological and pathological functions, mainly as a transcription factor that translocates to the nucleus upon tyrosine phosphorylation induced by cytokine stimulation. In addition, a small pool of STAT3 resides in the mitochondria where it serves as a sensor for various metabolic stressors including reactive oxygen species (ROS). Mitochondrially-localized STAT3 largely exerts its effects through direct or indirect regulation of the activity of the electron transport chain (ETC). It has been assumed that STAT3 amounts in the mitochondria are static. We showed that various stimuli, including oxidative stress and cytokines, triggered a signaling cascade that resulted in a rapid loss of mitochondrially-localized STAT3. Recovery of the mitochondrial pool of STAT3 over time depended upon phosphorylation of Ser727 in STAT3 and new protein synthesis. Under these conditions, mitochondrially-localized STAT3 also became competent to bind to cyclophilin D (CypD). Binding of STAT3 to CypD was mediated by the N-terminus of STAT3, which was also important for reducing mitochondrial ROS production after oxidative stress. These results outline a role for mitochondrially-localized STAT3 in sensing and responding to external stimuli
PanAf20K : a large video dataset for wild ape detection and behaviour recognition
The work that allowed for the collection of the dataset was funded by the Max Planck Society, Max Planck Society Innovation Fund, and Heinz L. Krekeler. This work was supported by the UKRI CDT in Interactive AI under grant EP/S022937/1.We present the PanAf20K dataset, the largest and most diverse open-access annotated video dataset of great apes in their natural environment. It comprises more than 7 million frames across ∼20,000 camera trap videos of chimpanzees and gorillas collected at 18 field sites in tropical Africa as part of the Pan African Programme: The Cultured Chimpanzee. The footage is accompanied by a rich set of annotations and benchmarks making it suitable for training and testing a variety of challenging and ecologically important computer vision tasks including ape detection and behaviour recognition. Furthering AI analysis of camera trap information is critical given the International Union for Conservation of Nature now lists all species in the great ape family as either Endangered or Critically Endangered. We hope the dataset can form a solid basis for engagement of the AI community to improve performance, efficiency, and result interpretation in order to support assessments of great ape presence, abundance, distribution, and behaviour and thereby aid conservation efforts. The dataset and code are available from the project website: PanAf20KPeer reviewe
PanAf20K: A Large Video Dataset for Wild Ape Detection and Behaviour Recognition
We present the PanAf20K dataset, the largest and most diverse open-access
annotated video dataset of great apes in their natural environment. It
comprises more than 7 million frames across ~20,000 camera trap videos of
chimpanzees and gorillas collected at 14 field sites in tropical Africa as part
of the Pan African Programme: The Cultured Chimpanzee. The footage is
accompanied by a rich set of annotations and benchmarks making it suitable for
training and testing a variety of challenging and ecologically important
computer vision tasks including ape detection and behaviour recognition.
Furthering AI analysis of camera trap information is critical given the
International Union for Conservation of Nature now lists all species in the
great ape family as either Endangered or Critically Endangered. We hope the
dataset can form a solid basis for engagement of the AI community to improve
performance, efficiency, and result interpretation in order to support
assessments of great ape presence, abundance, distribution, and behaviour and
thereby aid conservation efforts.Comment: Accepted at IJC
- …