12,287 research outputs found
Exploring wind-driving dust species in cool luminous giants III. Wind models for M-type AGB stars: dynamic and photometric properties
Stellar winds observed in asymptotic giant branch (AGB) stars are usually
attributed to a combination of stellar pulsations and radiation pressure on
dust. Shock waves triggered by pulsations propagate through the atmosphere,
compressing the gas and lifting it to cooler regions, which create favourable
conditions for grain growth. If sufficient radiative acceleration is exerted on
the newly formed grains through absorption or scattering of stellar photons, an
outflow can be triggered. Strong candidates for wind-driving dust species in
M-type AGB stars are magnesium silicates (MgSiO and MgSiO). Such
grains can form close to the stellar surface, they consist of abundant
materials and, if they grow to sizes comparable to the wavelength of the
stellar flux maximum, they experience strong acceleration by photon scattering.
We use a frequency-dependent radiation-hydrodynamics code with a detailed
description for the growth of MgSiO grains to calculate the first
extensive set of time-dependent wind models for M-type AGB stars. The resulting
wind properties, visual and near-IR photometry and mid-IR spectra are compared
with observations.We show that the models can produce outflows for a wide range
of stellar parameters. We also demonstrate that they reproduce observed
mass-loss rates and wind velocities, as well as visual and near-IR photometry.
However, the current models do not show the characteristic silicate features at
10 and 18 m as a result of the cool temperature of MgSiO grains in
the wind. Including a small amount of Fe in the grains further out in the
circumstellar envelope will increase the grain temperature and result in
pronounced silicate features, without significantly affecting the photometry in
the visual and near-IR wavelength regions.Comment: 11 pages, 14 figure
An accurate model for genetic hitch-hiking
We suggest a simple deterministic approximation for the growth of the
favoured-allele frequency during a selective sweep. Using this approximation we
introduce an accurate model for genetic hitch-hiking. Only when Ns < 10 (N is
the population size and s denotes the selection coefficient), are discrepancies
between our approximation and direct numerical simulations of a Moran model
noticeable. Our model describes the gene genealogies of a contiguous segment of
neutral loci close to the selected one, and it does not assume that the
selective sweep happens instantaneously. This enables us to compute SNP
distributions on the neutral segment without bias.Comment: 12 pages, 10 figure
Sample genealogies and genetic variation in populations of variable size
We consider neutral evolution of a large population subject to changes in its
population size. For a population with a time-variable carrying capacity we
have computed the distributions of the total branch lengths of its sample
genealogies. Within the coalescent approximation we have obtained a general
expression, Eq. (27), for the moments of these distributions for an arbitrary
smooth dependence of the population size on time. We investigate how the
frequency of population-size variations alters the distributions. This allows
us to discuss their influence on the distribution of the number of mutations,
and on the population homozygosity in populations with variable size.Comment: 19 pages, 8 figures, 1 tabl
Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars
The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars
is usually attributed to a two-stage process: atmospheric levitation by
pulsation-induced shock waves, followed by radiative acceleration of newly
formed dust grains. The dust transfers momentum to the surrounding gas through
collisions and thereby triggers a general outflow. Radiation-hydrodynamical
models of M-type AGB stars suggest that these winds can be driven by photon
scattering -- in contrast to absorption -- on Fe-free silicate grains of sizes
0.1--1\,m. In this paper we study photometric constraints for wind-driving
dust species in M-type AGB stars, as part of an ongoing effort to identify
likely candidates among the grain materials observed in circumstellar
envelopes. To investigate the scenario of stellar winds driven by photon
scattering on dust, and to explore how different optical and chemical
properties of wind-driving dust species affect photometry we focus on two sets
of dynamical models atmospheres: (i) models using a detailed description for
the growth of MgSiO grains, taking into account both scattering and
absorption cross-sections when calculating the radiative acceleration, and (ii)
models using a parameterized dust description, constructed to represent
different chemical and optical dust properties. By comparing synthetic
photometry from these two sets of models to observations of M-type AGB stars we
can provide constraints on the properties of wind-driving dust species.
Photometry from wind models with a detailed description for the growth of
MgSiO grains reproduces well both the values and the time-dependent
behavior of observations of M-type AGB stars, providing further support for the
scenario of winds driven by photon scattering on dust.Comment: Accepted for publication in A&A. 15 pages, 14 figure
Permanent-magnet atom chips for the study of long, thin atom clouds
Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation
Atom detection and photon production in a scalable, open, optical microcavity
A microfabricated Fabry-Perot optical resonator has been used for atom
detection and photon production with less than 1 atom on average in the cavity
mode. Our cavity design combines the intrinsic scalability of microfabrication
processes with direct coupling of the cavity field to single-mode optical
waveguides or fibers. The presence of the atom is seen through changes in both
the intensity and the noise characteristics of probe light reflected from the
cavity input mirror. An excitation laser passing transversely through the
cavity triggers photon emission into the cavity mode and hence into the
single-mode fiber. These are first steps towards building an optical
microcavity network on an atom chip for applications in quantum information
processing.Comment: 4 pages, 4 figures. A typographical error in the published paper has
been corrected (equation of the corrected normalized variance, page 3, 2nd
paragraph
On cloud ice induced absorption and polarisation effects in microwave limb sounding
Microwave limb sounding in the presence of ice clouds was studied by detailed simulations, where clouds and other atmospheric variables varied in three dimensions and the full polarisation state was considered. Scattering particles were assumed to be horizontally aligned oblate spheroids with a size distribution parameterized in terms of temperature and ice water content. A general finding was that particle absorption is significant for limb sounding, which is in contrast to the down-looking case, where it is usually insignificant. Another general finding was that single scattering can be assumed for cloud optical paths below about 0.1, which is thus an important threshold with respect to the complexity and accuracy of retrieval algorithms. The representation of particle sizes during the retrieval is also discussed. Concerning polarisation, specific findings were as follows: Firstly, no significant degree of circular polarisation was found for the considered particle type. Secondly, for the ±45° polarisation components, differences of up to 4 K in brightness temperature were found, but differences were much smaller when single scattering conditions applied. Thirdly, the vertically polarised component has the smallest cloud extinction. An important goal of the study was to derive recommendations for future limb sounding instruments, particularly concerning their polarisation setup. If ice water content is among the retrieval targets (and not just trace gas mixing ratios), then the simulations show that it should be best to observe any of the ±45° and circularly polarised components. These pairs of orthogonal components also make it easier to combine information measured from different positions and with different polarisations
Experimental f-value and isotopic structure for the Ni I line blended with [OI] at 6300A
We have measured the oscillator strength of the Ni I line at 6300.34 \AA,
which is known to be blended with the forbidden [O I] 6300 line, used
for determination of the oxygen abundance in cool stars. We give also
wavelengths of the two isotopic line components of Ni and Ni
derived from the asymmetric laboratory line profile. These two line components
of Ni I have to be considered when calculating a line profile of the 6300 \AA\
feature observed in stellar and solar spectra. We also discuss the labelling of
the energy levels involved in the Ni I line, as level mixing makes the
theoretical predictions uncertain.Comment: Accepted for publication in ApJLetter
- …