68 research outputs found
Recommended from our members
Genomic and phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants
Background: Pre-genomic and post-genomic studies demonstrate that chlamydiae actively recombine in vitro and
in vivo, although the molecular and cellular biology of this process is not well understood. In this study, we
determined the genome sequence of twelve Chlamydia trachomatis recombinants that were generated in vitro
under antibiotic selection. These strains were used to explore the process of recombination in Chlamydia spp.,
including analysis of candidate recombination hotspots, and to correlate known C. trachomatis in vitro phenotypes
with parental phenotypes and genotypes.
Results: Each of the 190 examined recombination events was the product of homologous recombination, and no
candidate targeting motifs were identified at recombination sites. There was a single deletion event in one
recombinant progeny that resulted in the removal of 17.1 kilobases between two rRNA operons. There was no
evidence for preference for any specific region of the chromosome for recombination, and analyses of a total of
over 200 individual recombination events do not provide any support for recombination hotspots in vitro. Two
measurable phenotypes were analyzed in these studies. First, the efficiency of attachment to host cells in the
absence of centrifugation was examined, and this property segregated to regions of the chromosome that carry
the polymorphic membrane protein (Pmp) genes. Second, the formation of secondary inclusions within cells varied
among recombinant progeny, but this did not cleanly segregate to specific regions of the chromosome.
Conclusions: These experiments examined the process of recombination in C. trachomatis and identified tools that
can be used to associate phenotype with genotype in recombinant progeny. There were no data supporting the
hypothesis that particular nucleotide sequences are preferentially used for recombination in vitro. Selected
phenotypes can be segregated by analysis of recombination, and this technology may be useful in preliminary
analysis of the relationship of genetic variation to phenotypic variation in the chlamydiae.Keywords: Attachment, Chlamydia, Secondary inclusions, Recombination, Hotspo
Recommended from our members
The Broad-Spectrum Antiviral Compound ST-669 Restricts Chlamydial Inclusion Development and Bacterial Growth and Localizes to Host Cell Lipid Droplets within Treated Cells
Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this
study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria
and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species
of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells. The antichlamydial
and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common
mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that
eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae
grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization.
Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized
to host cell lipid droplets but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular
growth in a host-cell-dependent manner and interrupts proper development of chlamydial inclusions, possibly through a
lipid droplet-dependent process
Identification of Significant \u3cem\u3eE\u3c/em\u3e0 Strength in the 2\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e → 2\u3csub\u3e1\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e Transitions of \u3csup\u3e58,60,62\u3c/sup\u3eNi
The E0 transition strength in the 22+ → 21+ transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ(E2/M1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ(E2/M1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ → 2+ E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date
Persistent Amyloidosis following Suppression of Aβ Production in a Transgenic Model of Alzheimer Disease
BACKGROUND: The proteases (secretases) that cleave amyloid-β (Aβ) peptide from the amyloid precursor protein (APP) have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Aβ production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis. METHODS AND FINDINGS: We have generated a transgenic mouse model that genetically mimics the arrest of Aβ production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Aβ production to levels found in nontransgenic mice. Suppression of transgenic Aβ synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Aβ deposits retain a considerable amyloid load, with little sign of active clearance. CONCLUSION: This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Aβ production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear
25-Hydroxyvitamin D levels and chronic kidney disease in the AusDiab (Australian Diabetes, Obesity and Lifestyle) study
<p>Abstract</p> <p>Background</p> <p>Low 25-hydroxy vitamin D (25(OH)D) levels have been associated with an increased risk of albuminuria, however an association with glomerular filtration rate (GFR) is not clear. We explored the relationship between 25(OH)D levels and prevalent chronic kidney disease (CKD), albuminuria and impaired GFR, in a national, population-based cohort of Australian adults (AusDiab Study).</p> <p>Methods</p> <p>10,732 adults ≥25 years of age participating in the baseline survey of the AusDiab study (1999–2000) were included. The GFR was estimated using an enzymatic creatinine assay and the CKD-EPI equation, with CKD defined as eGFR <60 ml/min/1.73 m<sup>2</sup>. Albuminuria was defined as a spot urine albumin to creatinine ratio (ACR) of ≥2.5 mg/mmol for men and ≥3.5 for women. Serum 25(OH)D levels of <50 nmol/L were considered vitamin D deficient. The associations between 25(OH)D level, albuminuria and impaired eGFR were estimated using multivariate regression models.</p> <p>Results</p> <p>30.7% of the study population had a 25(OH)D level <50 nmol/L (95% CI 25.6-35.8). 25(OH)D deficiency was significantly associated with an impaired eGFR in the univariate model (OR 1.52, 95% CI 1.07-2.17), but not in the multivariate model (OR 0.95, 95% CI 0.67-1.35). 25(OH)D deficiency was significantly associated with albuminuria in the univariate (OR 2.05, 95% CI 1.58-2.67) and multivariate models (OR 1.54, 95% CI 1.14-2.07).</p> <p>Conclusions</p> <p>Vitamin D deficiency is common in this population, and 25(OH)D levels of <50 nmol/L were independently associated with albuminuria, but not with impaired eGFR. These associations warrant further exploration in prospective and interventional studies.</p
The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1
Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations
Development of Risk Prediction Equations for Incident Chronic Kidney Disease
IMPORTANCE ‐ Early identification of individuals at elevated risk of developing chronic kidney disease
could improve clinical care through enhanced surveillance and better management of underlying health
conditions.
OBJECTIVE – To develop assessment tools to identify individuals at increased risk of chronic kidney
disease, defined by reduced estimated glomerular filtration rate (eGFR).
DESIGN, SETTING, AND PARTICIPANTS – Individual level data analysis of 34 multinational cohorts from
the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected from April, 1970 through January, 2017. A two‐stage analysis was performed, with each study first
analyzed individually and summarized overall using a weighted average. Since clinical variables were often differentially available by diabetes status, models were developed separately within participants
with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external
cohorts (N=2,253,540).
EXPOSURE Demographic and clinical factors.
MAIN OUTCOMES AND MEASURES – Incident eGFR <60 ml/min/1.73 m2.
RESULTS – In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were
660,856 incident cases of reduced eGFR during a mean follow‐up of 4.2 years. In 781,627 participants
with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean
follow‐up of 3.9 years. Equations for the 5‐year risk of reduced eGFR included age, sex, ethnicity, eGFR,
history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants
with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction
between the two. The risk equations had a median C statistic for the 5‐year predicted probability of
0.845 (25th – 75th percentile, 0.789‐0.890) in the cohorts without diabetes and 0.801 (25th – 75th
percentile, 0.750‐0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%)
study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was
similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18
(89%) had a slope of observed to predicted risk between 0.80 and 1.25.
CONCLUSIONS AND RELEVANCE – Equations for predicting risk of incident chronic kidney disease
developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and
variable calibration in diverse populations
The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V
The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the
first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises
three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black
Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains
extensive targeting information for the two multi-object spectroscopy programs
(MWM and BHM), including input catalogs and selection functions for their
numerous scientific objectives. We describe the production of the targeting
databases and their calibration- and scientifically-focused components. DR18
also includes ~25,000 new SDSS spectra and supplemental information for X-ray
sources identified by eROSITA in its eFEDS field. We present updates to some of
the SDSS software pipelines and preview changes anticipated for DR19. We also
describe three value-added catalogs (VACs) based on SDSS-IV data that have been
published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
- …